Input controlled soft-start

L1 L2 $\stackrel{\text { L3 }}{ }$ *Magnetic Circuit Breaker	When the control input is switched to the ON-state (S closed) the motor controller will soft start the motor according to the settings of the ramp-up time and initial torque adjustments. When the control input is switched to the Off-state (S open) the motor will be switched Off instantaneously only if the Ramp-Down time is adjusted to 0 . With any other setting the motor will be soft stopped according to the settings of the Ramp-Down time adjustment. *Use UL approved Magnetic Circuit Breaker or UL specified back-up fuse type K5 or H Class
Line controlled soft-start	
	When the contactor C 1 is switched to the ON-state, the motor controller will soft start the motor according to the settings of the ramp-up time and initial torque adjustments. When the contactor C1 is switched to the OFF-state, the motor will be switched Off instantaneously. In this application the contactor will have no load during making operation. The contactor will carry and break the nominal motor current when switching off. *Use UL approved Magnetic Circuit Breaker or UL specified back-up fuse type K5 or H Class

Combining Reversing Electronic Contactor \& Soft Starter

Soft-reversing of motors up to 10A A Soft-Reversing of a motor can easily be achieved by connecting a reversing relay to the Soft Starter. The reversing relay type SRC 3 DX will determine the direction of rotation Forward or Reverse and the Soft Starter type SMC 33 DA XXXX will perform soft-starting and soft-stopping of the motor. If soft-stop is not required the application can be simplified by connecting the control circuit of the Soft Starter to the main terminals as shown under Line Controlled SoftStart. A delay of approx. 0.5 sec . between forward and reverse control signal must be allowed to avoid influence from the voltage generated by the motor during turn Off.
Combining reversing mechanical contactor \& soft starter

Soft-reversing of motors up to 85A
A Soft-Reversing of motors can easily be achieved when the motor load exceeds 10A by connecting a mechanical reversing contactor to the Soft Starter. The reversing contactor will determine the direction of rotation forward or reverse and the Soft Starter type SMC3/33DA will perform soft-starting and soft-stopping of the motor.
If the contactors are always switched in no load conditions the lifetime of the contactors will normally exceed 10 million cycles.

Thermal overload protection (see also page 36)
EMC

Insulation specifications

Rated insulation voltage	Ui 660 Volt
Rated impulse withstand voltage	Uimp. 4 kVolt
Installation catagory	III

Environment

Degree of protection	IP 20	Pollution degree	3

*These products has been designed for class A equipment. Use of the product in domestic environments may cause radio interference, in which case the user may be required to employ additional mitigation methods.
*UL:Use thermal overload protection as required by the National Electric Code. When protected by a non-time delay K5 or H Class fuse, rated 266% of motor FLA, this device is rated for use on a circuit capable of delivering not more than $5,000 \mathrm{rms}$. symmetrical amperes, 600 V maximum. Maximum surrounding temperature $40^{\circ} \mathrm{C}$.

Functional diagram

Mains Ue L1, L2, L3
Control Uc A1A2
Motor voltage
Output term. 13-14
Output term. 23-24
LED 1
LED 2

Output: Terminal 13-14 Start -Stop
For control of Start-Stop function directly wired to the soft starter
Output: Terminal 23-24 By-Pass
For signalling Full-On state. By-Pass in AC-53b operation
Note: When both LED's are flashing, no connection to the motor (SMC 3 only),
Note: When both LED's are flashing, one phase is missing (SMC 33 only),
Mounting and cable wiring information
Mounting information see page 36
Cable wiring see page 37

Specifications are subject to change without notice

Application, adjustment hints and general specifications for SMC 3 \& 33

How to adjust ramp times and initial torque

A. Ramp-Up time and initial torque (standard load)

A1) Set the Ramp-Up switch to maximum.
A2) Set the Ramp-Down switch to minimum.
A3) Set the Initial Torque switch to minimum.
A4) Apply control signal for a few seconds.
If the load does not rotate immediately increment the Initial Torque and try again. Repeat until the load starts to rotate immediately on start-up.

A5) Adjust Ramp-Up time to the estimated start time (scale is in seconds) and start the motor.

A6) Decrease the Ram-Up time until mechanical surge is observed during start.

A7) Increase the time one step to eliminate the surge.

B. Kick-Start / Break loose. High inertia loads.

If it is not possible to reach a time sufficient for the application (step A7) it may be necessary to kick-start the load.

B1) Set the Ramp-Up switch to maximum.
B2) Set the Ramp-Down switch to minimum.
B3) Set the Initial Torque switch to minimum Kick-start torque.
B4) Apply control signal for a few sec. If the load stops right after the 200 ms "kick' increment the initial torque and try again. Repeat until the load continues to rotate after the "kick"

B5) Adjust Ramp-Up time to the desired start time (the scale is in seconds) and start the motor.
C. Ramp-Down time. E.g. Pump loads Follow procedure A or B to set Ramp-Up and initial torque

C1). Set the Ramp-Down switch to maximum.
C2) Switch off the control voltage and observe any mechanical surges on the load. If none decrement Ramp-Down switch and try again. Repeat until mechanical surges on the load is observed.

C3) Increase the time one step to eliminate the surge.

Note:

a) Control of the motor torque is achieved by acting on the motor voltage. The motor speed depends on the torque produced by the motor and the load on the motor shaft.
b) A motor with little or no load will reach full speed before the voltage has reached its maximum value.
c) The soft starter will read time and torque settings in the off state. Repeated starts may trip the motor protection relay.
d) Make sure NOT to set the rotary switches in between positions as this corrupts the time and torque adjustment. Use screwdriver $2 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

Typical motor current by different line voltages

kW	HP	220-230 VAC	380-400 VAC	415 VAC	440 VAC	460-480 VAC	600 VAC
0.37	0.5	1.8 A	1 A	1 A	1 A	1 A	1 A
0.55	0.75	2.75 A	1.6 A	1.5 A	1.4 A	1.4 A	1.1 A
0.75	1	3.5 A	2 A	2 A	1.7 A	1.7 A	1.3 A
1.1	1.5	4.4 A	2.6 A	2.5 A	2.4 A	2.4 A	1.8 A
1.5	2	6.1 A	3.5 A	3.5 A	3.1 A	3 A	2.3 A
2.2	3	8.7 A	5 A	5 A	4.5 A	4.4 A	3.4 A
3	4	11.5 A	6.6 A	6.5 A	5.8 A	5.6 A	4.3 A
4	5	14.5 A	8.5 A	8.3 A	8 A	7.8 A	6 A
5.5	7.5	20 A	11.5 A	11 A	10.4 A	10 A	7.7 A
7.5	10	27 A	15.5 A	14 A	13.7 A	13 A	10 A
11	15	39 A	22 A	21 A	20 A	19 A	15 A
15	20	52 A	30 A	28 A	26 A	25 A	20 A
18.5	25	64 A	37 A	35 A	33 A	32 A	25 A
22	30	75 A	43 A	40 A	38 A	36 A	28 A
30	40		58 A	54 A	52 A	50 A	38 A
37	50		70 A	64 A	61 A	59 A	45 A
45	60		83 A	78 A	75 A	73 A	56 A

