General Catalog

NEW

INDUCTIVE SENSORS

- Full Inox Basic with IO-Link
- Full Inox Weld-Immune, M8
- Full Inox C23, cubic with IO-Link
- High Temperature, 230°C (440°F)

PHOTOELECTRIC SENSORS

- Contrast sensor with IO-Link
- C12: Cubic Subminiature
- C23: Cubic with IO-Link
- C23 Distance: Triangulation
- C55 Distance: TOF

SAFETY

• Type 2 light curtains for hand protection

RFID

- LF + HF R/W modules in ContriNet
- HF tags for 180°C (356°F), embeddable in metal
- HF tags for 250°C (482°F)
- EtherCat interface

INTRODUCTION

CONTRINEX

Contrinex is a leading manufacturer of sensors for factory automation. The Swiss company, headquartered in Givisiez near Fribourg (CH), has a unique and innovative range of products whose features far surpass those of standard sensors.

Since its foundation in 1972 by Peter Heimlicher, Dipl Ing ETH, Contrinex has grown from a one-man operation to a multinational group with over 500 employees worldwide. More than 15 subsidiaries cover the core markets in Europe, Asia, North and South America.

At a glance

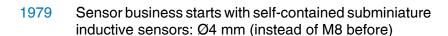
- Technology leading manufacturer of inductive and photoelectric sensors as well as safety and RFID systems
- World market leader for miniature sensors, sensors with long operating distances and devices for particularly demanding operating conditions (all-metal, high-pressure and high-temperature resistant
- Represented in over 60 countries worldwide, headquarters in Switzerland
- 8000 products

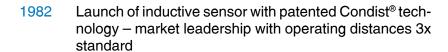
Technology leader for sensor intelligence and industrial RFID

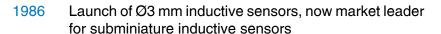
INTELLIGENT SENSORS FOR THE 4TH INDUSTRIAL REVOLUTION: INDUSTRY 4.0

Fit for the future with IO-Link

Intelligent sensors are the fundamental building blocks of modern smart factories. They enable sensorsupported production resources (machines, robots, etc.) to configure, control, manage and optimize themselves. Precise, reliable sensor data is now more essential than ever.


Sensors from Contrinex, the leader in intelligent sensor technology, ensure excellent data quality. To communicate that data, all Contrinex inductive and photoelectric ASIC sensors will be equipped with IO-Link as standard. Customers use either the sensor's binary PNP output or its intelligent IO-Link interface. Both are available in one and the same device.


Another advantage is the fact that, with Contrinex sensors, there is no extra charge for IO-Link. This makes them not only quick and simple to install, but also highly economic.


As the first standardized IO technology worldwide (IEC 61131-9) for communication with sensors and actuators, IO-Link is crucial to the 4th Industrial Revolution. By installing Contrinex ASIC sensors with IO-Link, users can make themselves fit for the future.

MARKET-LEADING INNOVATION

1996 Market launch of Ø4 mm subminiature photoelectric sensors

Launch of world's first inductive sensor with full-metal 1999 housing - thanks to patented Condet® technology

2005 Integration of Contrinex's excellent performance for inductive sensors in CMOS-ASIC (Application-Specific Integrated Circuit), a proprietary development

2007 Launch of RFID products for closed loop industrial applications. First RFID product range with tags and readers in full-metal housing

2008 Launch of Safetinex[®], the industrial safety product range

2009 The smart sensor is born. Launch of next generation ASIC, a "system on a chip", including IO-Link interface

Development starts on Contrinex's first ASIC for 2011 photoelectric sensors

2014 Launch of photoelectric sensor with new generation Contrinex ASIC and IO-Link

Early inductive sensor produced for own use in 1973 (special version for extreme conditions)

ASIC sensor technology

Safety product range

Subminiature photoelectric sensor

CONTRINEX PRODUCT RANGES

SENSORS

INDUCTIVE

BASIC MINIATURE **EXTREME** EXTRA PRESSURE HIGH PRESSURE EXTRA TEMPERATURE HIGH TEMPERATURE WASHDOWN ANALOG OUTPUT 2-WIRE WELD-IMMUNE SPECIAL

PHOTOELECTRIC

CYLINDRICAL SUBMINIATURE CYLINDRICAL MINIATURE CYLINDRICAL SMALL **CUBIC SUBMINIATURE CUBIC MINIATURE CUBIC SMALL CUBIC COMPACT** FIBER-OPTIC AMPLIFIERS, FIBERS

ULTRASONIC

MINIATURE **SMALL** COMPACT

CAPACITIVE

BASIC HIGH PERFORMANCE

LIGHT CURTAINS

FINGER PROTECTION type 4 HAND PROTECTION type 4 and type 2 SAFETY RELAYS ACCESS CONTROL type 4

RFID

LOW AND HIGH FREQUENCY

TRANSPONDERS CONTRINET **USB READ/WRITE MODULES** HANDHELD DEVICES **ACCESSORIES SOFTWARE** STARTER KITS

SENSOR SELECTOR

	INDUCTIVE	PHOTOELECTRIC
SENSING DISTANCE	1 mm - 40 mm	1 mm - 50,000 mm
TARGET MATERIAL	Metal only	Any material that reflects light
SENSING SPEED	0.02 - 10 kHz	1 - 5 kHz
ENVIRONMENT	Versions for normal or harsh and dirty environments, with protection class up to IP 68 / IP 69K	For clean environments without dust or steam, with protection class up to IP 67
PROGRAM OVERVIEW	P. 16-19	P. 168 - 171
TASKS	 ✓ Presence detection of metal objects ✓ Position control of all kinds of metal targets ✓ Counting tasks ✓ Distance control on end positions ✓ Quality control 	 ✓ Sensing of light reflective objects ✓ Position control of cartons and other objects on conveyors ✓ Detection of small objects over large distances

ULTRASONIC	CAPACITIVE	
10 mm - 6000 mm	1 mm - 40 mm	
Any material that reflects sounds	Metals, non-metals, liquids, powders	
1 - 10 Hz	15 - 500 Hz	
For industrial environments, with protection class up to IP 67	For normal or demanding environments, with protection class up to IP 67	
P. 286 - 287	P. 312 - 313	
 ✓ Detection of all objects that reflect ultrasound ✓ Monitoring of winding and unwinding processes ✓ Liquid level control ✓ Loop tension control ✓ Position feedback ✓ Distance or height control 	 ✓ Level control of fluids, bulk materials and powder ✓ Presence detection of almost all materials ✓ Counting tasks for non-metallic materials ✓ Detection through non-metallic container walls 	

APPLICATIONS

AUTOMOTIVE MANUFACTURING INDUSTRY

Today, sensors of all types are common in automotive factories around the globe. Highly automated plants with demanding conformity requirements rely heavily on sensor technology to maintain world-class quality standards, particularly where harsh processes such as welding, metal finishing and high-temperature coating are required.

Manufacturing engineers working for automotive manufacturers and for first- and second-tier suppliers expect robust, reliable sensors that deliver accurate, repeatable results with minimal downtime.

Recommended product ranges:

Inductive - Full Inox - Extreme

Inductive - Classics - Basic

Inductive - Full Inox - Weld-Immune

Inductive - Extra Distance - Basic

PACKAGING MACHINES

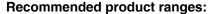
On the journey from manufacturer to consumer, packaging protects all types of product, including foods, pharmaceuticals, white goods and cosmetics. Although packaging helps bring competitive products to target markets in the best possible condition. costs are often significant, and automation helps minimize the impact.

The packaging industry is highly innovative, using sensors to identify, select and position packaging of all types. Reducing manufacturing costs and ensuring environmental sustainability are key objectives, and sensors for packaging machines are chosen to maximize efficiency while ensuring reliable, repeatable operation.

Recommended product ranges:

Photoelectric - Cubic Small Photoelectric - Cylindrical Small

Photoelectric - Cubic Miniature



MACHINE TOOLS

Machine tools impose harsh operating conditions on the sensors needed to control cutting, forming and joining processes that run continuously in many metalworking factories. Common hazards include cutting fluid, cooling sprays, swarf particles and electromagnetic interference, making sensor selection particularly difficult where world-class performance is essential.

Size is another key factor, as modern tool-holders allow only limited space for the sensors needed to identify and position individual tools during rapid tool-changing. The right sensors contribute to efficient production, without interruption or error.

Inductive - Classics - Miniature Photoelectric - Cylindrical Subminiature Inductive - Extra Distance - Basic

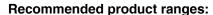
LOGISTICS

Whatever the logistics system, choosing the right sensors is crucial to achieving the six "rights" of logistics: ensuring that the right goods, in the right quantities, in the right condition, are delivered to the right place, at the right time, for the right cost.

From large-scale containerized shipping to everyday internal logistics, engineers select the right sensor technology for each container, conveyor, palletizer or robot, ensuring reliable, repeatable detection and identification, together with troublefree operation.

Recommended product ranges:

Inductive - Extra Distance - Basic Photoelectric - Cubic Small Inductive - Classics - Basic Photoelectric - Cylindrical Small



APPLICATIONS

TEXTILE

Machinery manufacturers supplying the textile, leather and clothing industries rely on sensors for efficiency, reliability and precision. World-class accuracy is essential for production of technical textiles and for making the carbon or chemical fibers used in modern, innovative products, often in highly automated factories.

The high-speed machinery used by textile manufacturers must operate continuously and safely, relying on top-quality sensors for all aspects of access and control. The environmental challenges include industrial cleaning routines that test every sensor to the limit of its capability.

Inductive - Classics - Basic Inductive - Extra Distance - Basic Photoelectric - Cylindrical Small

FILLING MACHINES


Filling machines are widespread in many industries, including solids handling, chemical, food, beverage and pharmaceutical, often operating continuously around the clock. Industrial sensors detect containers, lids, labels and caps, measure fill levels and more, and play a vital role in keeping automated filling equipment running reliably, accurately and with minimal downtime.

When handling bulk solids or aggressive chemicals, or working in environments that may operate harsh clean-in-place routines, choosing robust, highquality sensors is essential to maximize operational efficiency and minimize total cost of ownership.

Recommended product ranges:

Photoelectric - Cubic Small Capacitive - Cylindrical - Basic Photoelectric - Cylindrical Small

GREEN ENERGY AND ENVIRONMENT

The Green Economy relies heavily on technology for its continued advancement, and sensors are a major component of any eco-friendly strategy. Environmental initiatives include wind-, wave- and solar-power generation, industrial and domestic recycling, energy management and development of alternative fuels.

To deliver the green agenda, all of these sectors utilize sensors extensively for reliable detection and identification of materials, accurate measurement of operational parameters and consistent control of processes.

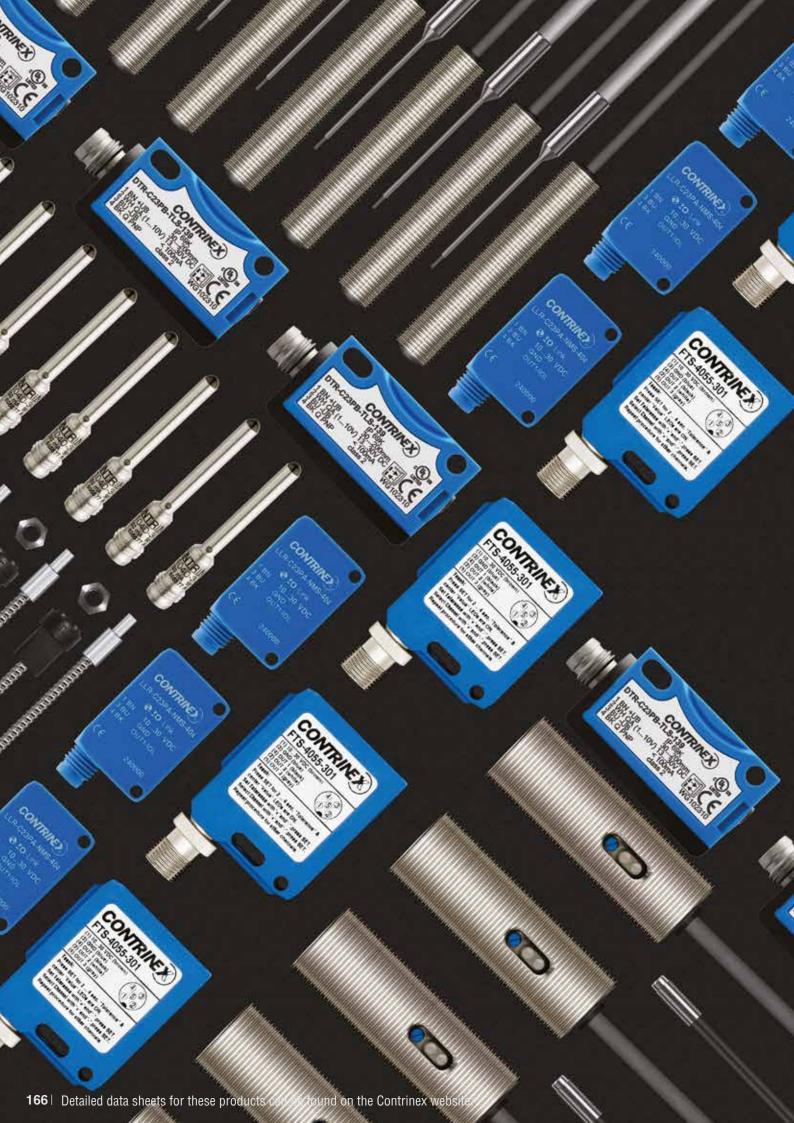
Recommended product ranges:

Inductive - Full Inox - Washdown Inductive - Classics - Basic Inductive - Extra Distance - Basic

MOBILE EQUIPMENT

Repairing and servicing equipment on site can be difficult and costly at best, and sometimes impossible. In these circumstances, robust, highly reliable sensors are vital for continuous operation in environments that may be challenging in the extreme. Exposure to dirt and dust, impact, vibration, seawater, corrosive chemicals and extremes of temperature and pressure are all part of a regular day's work.

Manufacturers of mobile and portable equipment, including forklifts, agricultural machines, construction plant, aircraft, vehicles and ships, expect exceptional reliability and life-expectancy when selecting fit-and-forget sensors for these demanding applications.


Recommended product ranges:

Inductive - Extra Distance - High pressure

Inductive - Full Inox - Extreme Inductive - Extra Distance - Basic

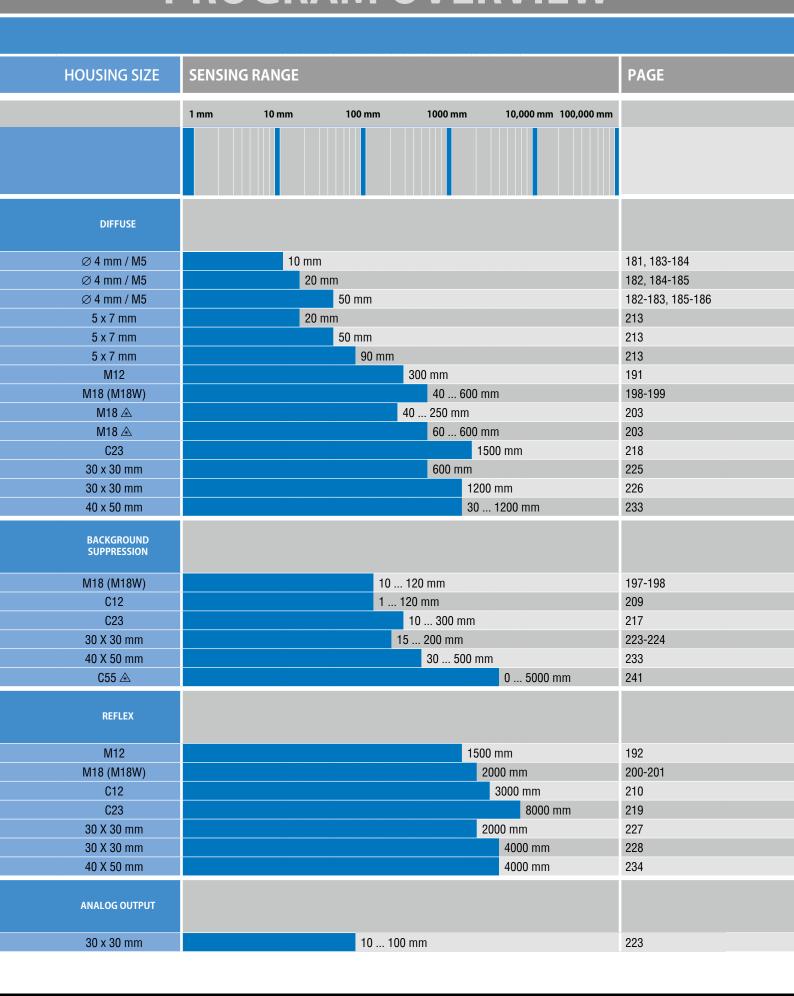
PHOTOELECTRIC SENSORS

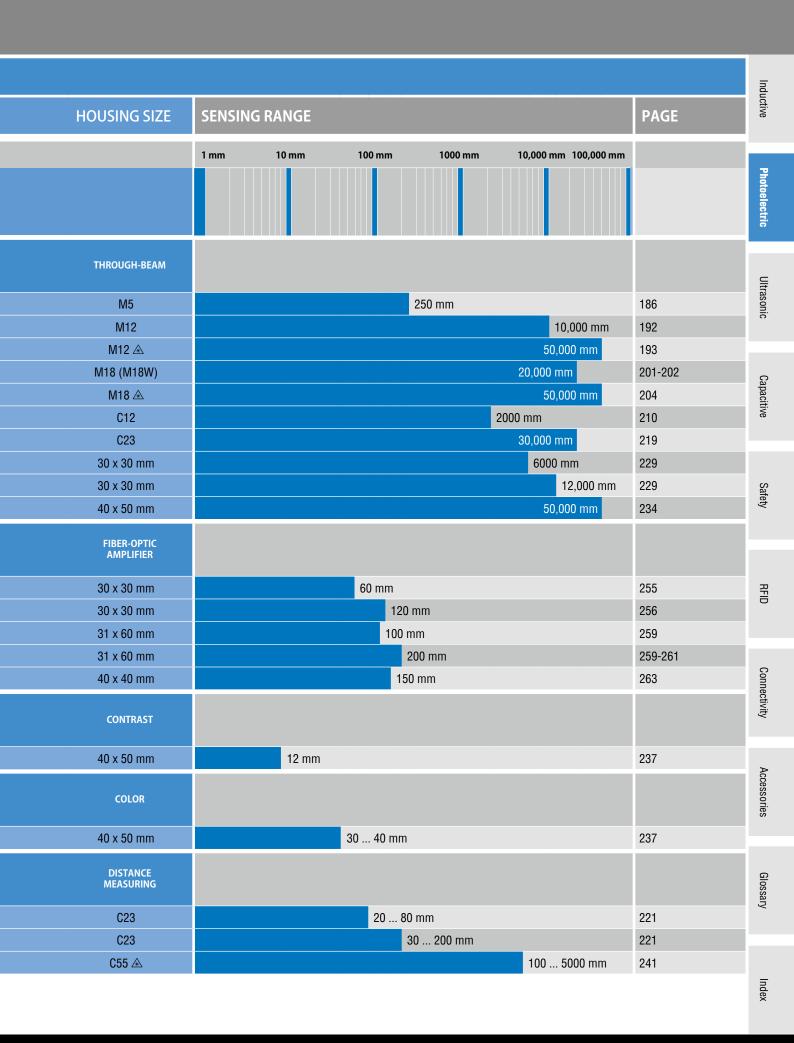
HIGHLIGHTS:

- ✓ Smallest self-contained subminiature sensors on the market
- ✓ Excellent background suppression characteristics
- ✓ Highly accurate laser sensors
- ✓ Analog output sensors for precise distance control
- ✓ Sensors with short housings and 90° sensing
- ✓ Wide range of fiber-optic amplifiers, including IO-Link
- ✓ Fiber-optic solutions for the most demanding environments
- ✓ Through-beam sensors for longest sensing ranges
- ✓ Excellent color recognition sensors

NEW:

- ✓ High performance contrast sensor with IO-Link
- ✓ Miniature C23 Series with IO-Link
- ✓ Distance measurement sensors in C23 and C55 sizes
- ✓ Subminiature C12 sensors with pinpoint LED


PROGRAM OVERVIEW


PRODUCT RANGE	SUBMINIATURE	MINIATURE	SMALL	
	CYLINI	DRICAL		

SEF	RIES	1040	1050	1120	1120L	1180 / 1180W	1180L	
HOUSING SIZE IN MM		Ø 4	M5	M12	M12	M18	M18	
SPECIAL					Laser		Laser	
Operating principle	SENSING RANGE							
Diffuse	0 1500 mm	p. 181-183	p. 183-186	p. 191		p. 198-199	p. 203	
Background suppression	2 5000 mm					p. 197-198		
Reflex	0 8000 mm			p. 192		p. 200-201		
Through-beam	0 50'000 mm		p. 186	p. 192	р. 193	p. 201-202	p. 204	
Analog output	10 100 mm							
Contrast	12 mm							
Color	30 40 mm							
Fiber-optic amplifiers *	0 200 mm							
Distance	20 5000 mm							

 $^{^{\}star}$ Optical amplifiers are presented in the optical fiber section

PROGRAM OVERVIEW

INTRODUCTION

OPERATING PRINCIPLE

The light-emitting diode (LED) emits a beam of modulated light towards the target. This beam is interrupted by the target, causing partial reflection. A part of the reflected light reaches the sensing face of the receiver. Depending on the operating principle, either the interrupted beam or the reflected light is used for further processing.

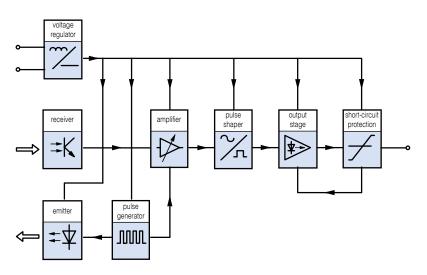


Fig. 9: Functional blocks of a photoelectric sensor

TECHNOLOGY FAMILIES

Contrinex photoelectric devices are divided into nine technology families, depending on their operating principle and use. The program includes energetic diffuse sensors, diffuse sensors with background suppression, reflex sensors, throughbeam sensors, sensors with analog output, color sensors, contrast sensors, distance measuring sensors and optical amplifiers.

DIFFUSE

Versatile and cost-effective

A diffuse-mode, or energetic-diffuse, photoelectric sensor is a reflective sensor, containing a transmitter and a receiver in a single housing. The sensor emits a light beam toward a distant target that acts as a reflector, returning part of the transmitted light to the sensor. The receiver detects the amount of light reflected by the target, triggering the sensor when the light intensity reaches a threshold value.

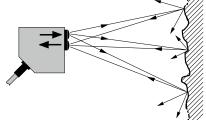


Fig. 10: Diffuse sensing

Diffuse-mode sensors are cost-effective as they do not require separate reflectors or receivers, and detect reflective targets with ease. Sensing range depends on the target's size, shape, color and surface finish, although sensor sensitivity is adjustable during installation to compensate for targets with poor reflective qualities.

BACKGROUND SUPPRESSION

Excellent suppression of light-colored backgrounds

Diffuse-mode photoelectric sensors with background suppression emit a focused light beam toward a distant target. Part of the beam is reflected from the target and

returns to the sensor, striking a positionsensitive receiver. The receiver distinguishes between reflections from the target and reflections from background objects, only triggering the sensor when the signal reaches a value that relates to the preset target distance.

The sensing range is practically insensitive to the target's size, color, shape and surface finish, and background-suppression sensors provide highly reliable detection of "difficult" targets, even against a light background. Stable, accurate detection of small, fast-moving parts on conveyors or automated machinery is possible over the entire sensing range, eliminating false triggering by objects in the background.

REFLEX

Long sensing range in a singlehousing device

A reflex, or reflective, photoelectric sensor contains a transmitter and a receiver in a single housing, and emits a pulsed, focused light beam toward a distant reflector. Reflected light returns to the sensor, arriving at the receiver. When a target object interrupts the light beam, the

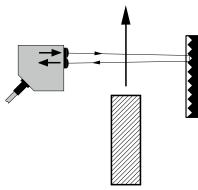


Fig. 11: Reflex sensing

receiver detects the reduced light intensity and triggers the sensor.

The relatively high level of reflected light allows reflex sensors to achieve sensing distances up to eight meters. For applications where the target object itself reflects light back toward the sensor, models with polarization filters are available. The filters ensure that only light returned from the reflector reaches the receiver, ensuring reliable detection, even with reflective targets.

THROUGH-BEAM

Emitter and receiver in separate housings for sensing ranges from 0 to 50 mm

A through-beam photoelectric sensor comprises an emitter and receiver, each mounted in a separate housing. The emitter is aligned so that the greatest possible amount of pulsed light from its emitting diode reaches the receiver (Fig. 12). The receiver, which is mounted be-

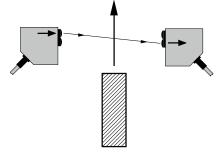


Fig. 12: Through-beam sensing

yond the target area, processes incoming light in such a way that it is clearly separated from ambient and other light sources. Any interruption of the light beam by a target triggers the sensor, causing its output signal to switch. For reliable operation, the target must be completely opaque, and its size should be at least equal to the diameter of the receiver's aperture.

Contrinex through-beam photoelectric sensors are ideal for industrial applications where sensing components must be mounted some distance from the target area. Through-beam sensors utilize infrared, visible and laser light sources to detect opaque and semi-transparent targets, reliably and repeatably, at extended distances. They are available in cylindrical versions from subminiature (Ø 4) to small (M18) and cubic versions from miniature (20 mm x 30 mm x 10 mm) to small (40 mm x 50 mm x 15 mm).

ANALOG OUTPUT

Precise distance control

Photoelectric sensors with analog outputs are ideal for measuring absolute values of distance. Using background suppression-mode technology, analog photoelectric sensors produce an output signal that is accurately calibrated and approximately proportional to the distance of the target from the sensor. Users have a choice of current or voltage outputs that are compatible with all modern control systems.

Contrinex analog photoelectric sensors provide all the advantages of standard diffuse-mode sensors, and measure target distances up to 100 mm.

DISTANCE

Ultra-precise distance measurement and detection of very large distances

Measurement with C23 and C55 distance sensors is largely independent of color and surface texture. Results are characterized by high accuracy and repeatability. In both types of sensors, the measurements are transmitted through an adjustable analog output. The sensors also offer a second output for a switching window, which is defined by teach-in. The sensor housings have an IP69K enclosure rating. In addition, the C55 is Ecolab certified and therefore suitable for the food industry.

The cubic C23 sensors use triangulation to measure distances up to 200 mm with extreme precision. Measuring just 20 mm x 34 mm x 12 mm, this sensor is suitable for numerous applications.

The C55 Series uses the time-of-flight (TOF) method for highly reliable measurement of large distances from 100 mm to 5000 mm. TOF technology calculates distance by measuring the time light takes to travel from the sensor to the target and back to the sensor. Thanks to this technology, C55 distance measuring sensors offer long detection ranges with excellent precision.

CONTRAST

The best contrast resolution for optimum print-mark detection

Contrast sensors are ideal for detecting print marks in printing, labelling and packaging processes. Using a narrowly focused light beam and RGB emission technology,

contrast sensors automatically select the best emission color (red, green or blue) during the teach-in procedure. Excellent contrast resolution, a high switching frequency (up to 10 kHz) and five tolerance levels ensure accurate detection and positioning, even when contrast differences are minimal. The integral IO-Link interface may be used to reduce changeover times through remote teach-in and parameterization. Other control functions, including monitoring, diagnosis and switching timer adjustment are also available.

Contrinex contrast sensors have a rugged PBTP housing (40 mm x 50 mm x 15 mm) with IP67 enclosure rating and are available in cable or adjustable (0°, 45° or 90°) connector versions.

COLOR

Reliable detection of fine color variations, even in harsh environments

Color photoelectric sensors utilize energetic-diffuse sensing technology to detect variations in target color, allowing color sorting or color control that is independent of target speed or distance. Using a "teach-in" function to program up to three separate outputs, the sensor recognizes or ignores even the smallest variations of shade.

Ideal for automated production processes that need reliable, repeatable color detection for accurate quality control, Contrinex color photoelectric sensors feature five selectable tolerance levels for each shade of color. Robust design ensures that sensor performance is unaffected by varying ambient light levels.

OPTICAL AMPLIFIER Reliable short and long-range sensing

Customers requiring intrinsically-safe photoelectric sensors with DIN-railmounted electronics need not look beyond the Contrinex 3060 series of fiber-optic amplifiers. Packed with functionality in a Crastin® molded-resin housing measuring only 31 mm x 60 mm x 10 mm, every model combines ease of set-up with market-leading features. With switching times as low as 0.1 millisecond, 3060 fiber-optic amplifiers are ideal for sensing fast-moving targets in demanding environments, including robotics, precision handling systems and

INTRODUCTION

printed circuit board production.

Distance setting is accomplished either by adjustment of a multi-turn potentiometer or by use of a teach-in function with manual fine adjustment; an optional digital display (model 3066) is also available. Using blue-light sources (models 3360 and 3365), detecting glass and other materials with similar absorption spectra is possible at distances up to 100 mm.

Fiber-optic sensors are common in explosive environments or in the presence of strong electromagnetic fields - in these areas, sensors that rely on electrical signals may present a risk of explosion or fail to operate correctly. Contrinex manufactures world-class fiber-optic sensors and amplifiers that not only meet these needs, but also present a highly practical means of sensing in confined spaces. With bend-radii as small as 2 mm, reliable, accurate sensing is possible even in the most inaccessible areas.

With self-contained fiber-optic sensors available in housings as small as 30 mm x 30 mm x 15 mm, and several models of small DIN-rail mounted amplifiers that accommodate multiple-sensor applications, the Contrinex range is highly versatile. A choice of synthetic optical fibers with impressively low attenuation rates for general use or glass optical fibers for high ambient temperatures and aggressive environments provides options for even the most demanding applications.

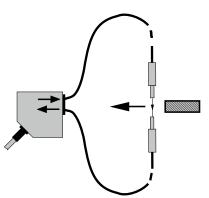


Fig. 13: Optical fiber, through-beam sensing

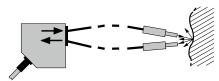


Fig. 14 Optical fiber, diffuse sensing

PRODUCT RANGES

SUBMINIATURE

Cubic (5 mm x 7 mm and 13 mm x 21 mm x 7 mm) and Cylindrical (Ø 4 and M5)

The Contrinex Subminiature range packs exceptional position- and presence-sensing performance into the smallest self-contained photoelectric sensors on the market. Through-beam or diffuse sensors in Ø 4 and M5 cylindrical or 5 mm x 7 mm rectangular stainless-steel housings offer multiple mounting methods and possibilities for beam orientation. For fully embedded applications, sensors with spherical sapphire-glass lenses produce focused,

cylindrical light beams. Best-in-class sensing distances of up to 90 mm (diffuse) and 250 mm (through-beam) allow sensors to be positioned at a safe distance from the target, minimizing the risk of accidental impact damage. Thanks to robust construction that includes rugged sensing faces, Contrinex Subminiature sensors are resistant to chemical contamination and abrasion, delivering maximum operational uptime and world-class reliability.

The C12 Series (13.5 mm x 21.8 mm x 7.7 mm) with small visible light spot thanks to red pinpoint LED offers long sensing ranges up to 2000 mm in a through-beam type and 3000 mm in a polarized reflex type. Two background suppression types are available with fixed sensing ranges up to 15 mm or 30 mm. A third type with 3-turn potentiometer (13.5 mm x 27.5 mm x 7.7 mm) reliably detects objects up to 120 mm.

- Long sensing ranges
- Background suppression up to 120 mm
- Excellent background suppression characteristics
- 45° angle cable outlet for easy installation

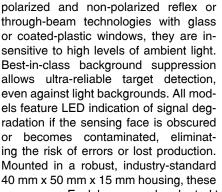
MINIATURE

Cubic (20 mm x 30 mm and 30 mm x 30 mm) and Cylindrical (M12)

Contrinex Miniature photoelectric sensors provide market-leading performance and reliability in rugged, industrystandard housings to ensure excellent resistance to machine vibration or shock from accidental impact. They are recommended for general automation in the printing, packaging or machine tool industries, and for electronic assembly or mechanical handling systems.

Ideal for applications where space is tight, they also offer excellent sensing distances. Available technologies include diffuse sensing, polarized reflex sensing, throughbeam sensing and amplifiers. Versions with excellent background suppression allow ultra-reliable target detection, even against light backgrounds. For applications where precise sensing is required but space is limited, the range includes fiber-optic amplifiers that allow the sensor housing to be mounted remotely.

The C23 series (20 mm x 30 mm x 10 mm) of miniature cubic sensors offers solutions for a wide range of industries and applications. With IO-Link communication on all PNP-type sensors, the C23 series bridges the gap between machines and the digital world to meet the demands of smart factories.


The C23 distance measurement sensor (20 mm x 34 mm x 12 mm) uses triangulation technology to offer precise measurement in an IP 69K rated, cubic housing. Distance measurement is also possible by utilizing the analog voltage outputs available on other cubic models. Contrinex M12 photoelectric sensors are ideal for high-speed applications in the most challenging environments, with the 1121L capable of detecting even the smallest targets. This laser throughbeam sensor is suitable for extended sensing ranges up to 50 meters and has a 1000 Hz maximum switching frequency.

SMALL Cubic (40 mm x 40/50 mm) and Cylindrical (M18)

Contrinex Small photoelectric sensors are rugged and highly reliable.

Cubic (40 mm x 40/50 mm) models are suitable for industrial applications including packaging and wrapping machinery, filling systems and general automated equipment. Available in diffuse (energetic or background-suppression),

sensors are Ecolab approved and rated to IP 67.

The range includes amplifiers and color sensors with 3 different teachable shades of color and 5 levels of tolerance. For precise print mark detection, contrast sensors are available with excellent contrast resolution, a high switching frequency (up to 10 kHz), five tolerance levels and IO-Link.

Cylindrical M18 models are ideal for demanding industrial environments, including automotive assembly, packaging machinery, conveyor systems and general automation equipment. A comprehensive range comprises diffuse sensors (both energetic and background-suppression variants), reflex sensors and through-beam sensors with the option of either axial or lateral sensing for sensing distances up to 50 meters. The range includes energetic diffuse sensors and through-beam sensors with laser light sources (1180L and 1181L models), allowing extended sensing distances for objects as small as 0.1 mm in size. Robust construction with metal housings and vacuum-encapsulated electronics on all models ensures maximum reliability and minimum downtime.

COMPACT

Cubic (50 mm x 50 mm)

The Contrinex C55 series (50 mm x 50 mm x 23 mm) uses time-of-flight (TOF) technology to measure long distances up to 5000 mm. With an IP 69K enclosure rating and Ecolab approval, these sensors are ideal for the food industry. A background suppression type is also available.

IO-LINK FUNCTIONALITY* WITH PHOTOELECTRIC SENSORS

Data monitoring:

Detection status is monitored and continuously transmitted through IO-Link process data. This data contains both the detection state and the stability of detection (sufficient detection margin). It is possible, therefore, to determine whether the sensor is working too close to its detection threshold, for example due to window contamination.

Diagnosis:

The operating state of the sensor is checked. In case of wire break, under-voltage, disturbances on the receiver, sensor malfunction or installation of the wrong sensor, information is provided directly through IO-Link to enable fast repair, maintenance and replacement.

Sensitivity and teach:

The sensitivity of the sensor can be adjusted remotely by changing the threshold. Alternatively, the teach function can be used to adapt the threshold to the application. Calibrated sensing ranges ensure easy sensor replacement by uploading the existing sensitivity to the replacement sensor.

Light-on/Dark-on selection:

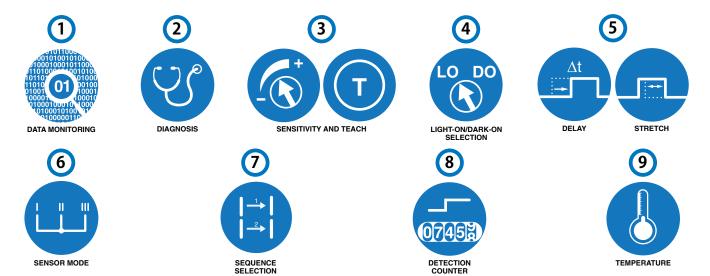
The output switching mode can be selected as light-on or dark-on. A single sensor type is configurable for the various needs of an application. This helps reduce the number of different sensor types required in stock.

The timing of output switching can be configured. Depending on the needs of an application, output switching can be delayed or the duration stretched.

Sensor mode:

3 different modes are selectable depending on the application needs: "Normal", "Fast" and "Fine". "Normal" mode is a good balance of speed and precision. In "Fast" mode, speed is higher and in "Fine" mode precision. is higher.

Sequence selection:


For cross-talk immunity with through-beam sensors, up to 10 different emitting sequences can be selected to pair the emitter with the receiver.

Detection counter:

Detection events are counted. By registering the number of detections, it is possible to calculate the speed or number of parts. The counter can be reset by means of a unique IO-Link message.

The internal temperature of the sensor is measured continuously, which provides an indication about the ambient temperature in the application. Moreover, the maximum temperature measured is saved for diagnosis and preventive maintenance purposes.

* Functionalities may vary depending on series and sensor type

THE SMALLEST ON THE MARKET

CYLINDRICAL SUBMINIATURE

PHOTOELECTRIC SENSORS

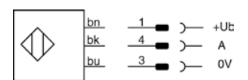
KEY ADVANTAGES

- ✓ Ø 4 and M5 housings for target detection in limited spaces
- ✓ Rugged metal housing
- ✓ Accurate target detection due to cylindrical light beam
- ✓ Rugged sapphire glass or glass sensing face, scratch and chemically resistant
- ✓ Shock and vibration resistant due to fully vacuum potted electronics
- √ High system reserves (excess gain)

RANGE OVERVIEW	Distance mm	Diffuse	Through-beam
CVLINIDDICAL	10	p. 181, 183-184	
CYLINDRICAL	20	p. 182, 184-185	
SUB-	50	p. 182-183, 185-186	
MINIATURE	250		p. 186
MINIATORE			

OVERVIEW

Housing material	Stainless steel V2A
Emitter	IR LED 880 nm
Hysteresis	10 % typ.
Degree of protection	IP 67
Supply voltage range	10 30 VDC
Ambient temperature range	0 +55 °C / 32 +131 °F
Output current	≤ 100 mA
Output voltage drop	≤ 2 V
Switching frequency	≤ 250 Hz
Switching time	2 msec
Max. ambient light halogen	5000 Lux
Max. ambient light sun	10,000 Lux

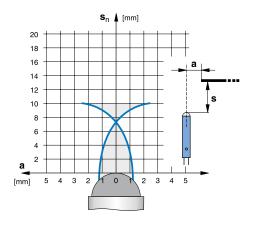

HOUSING SIZE MM		
OPERATING PRINCIPLE		

SENSING RANGE MM

PHOTOELECTRIC

WIRING DIAGRAM

PNP/NPN Light-ON / Dark-ON



DATA
Standard target
No-load supply current
Lens material
PNP Light-ON
NPN Light-ON
Other types available

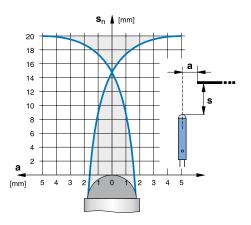
Ø 4 Ø 4 **DIFFUSE SENSOR DIFFUSE SENSOR** 10 10

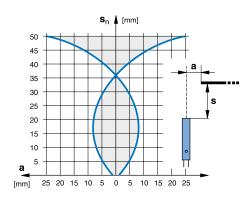
		G
		Glossary
100 x 100 mm white	100 x 100 mm white	_
≤ 15 mA	≤ 15 mA	
Sapphire glass	Sapphire glass	
LTK-1040-303-505	LTS-1040-303-505	=
LTK-1040-301-505	LTS-1040-301-505	Index

Ultrasonic

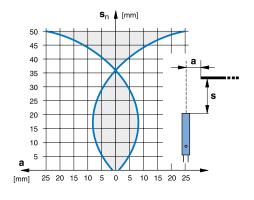
Capacitive

Connectivity


Accessories


Glossary

HOUSING SIZE MM	Ø 4	Ø 4
OPERATING PRINCIPLE	DIFFUSE SENSOR	DIFFUSE SENSOR
SENSING RANGE MM	20	50



DATA		
Standard target	100 x 100 mm white	100 x 100 mm white
No-load supply current	≤ 15 mA	≤ 15 mA
Lens material	Sapphire glass	Glass
PNP Light-ON	LTK-1040-303-506	LTK-1040-303
NPN Light-ON	LTK-1040-301-506	LTK-1040-301
Other types available		

Ø 4	M5	1100
DIFFUSE SENSOR	DIFFUSE SENSOR	כנועם
50	10	

		Glossary
100 x 100 mm white	100 x 100 mm white	~
≤ 15 mA	≤ 15 mA	
Glass	Sapphire glass	
LTS-1040-303	LTK-1050-303-505	=
LTS-1040-301	LTK-1050-301-505	Index
	PNP Dark-ON	

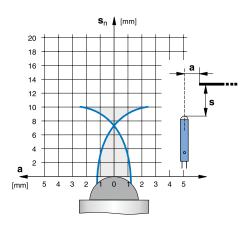
Photoelectric

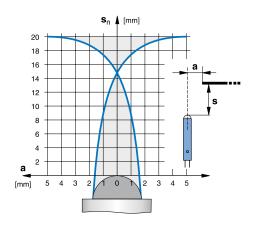
Ultrasonic

Capacitive

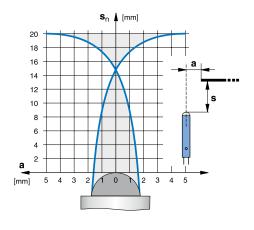
Safety

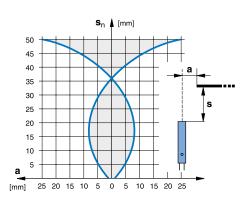
Connectivity


Accessories


Glossarv

HOUSING SIZE	M5	M5
OPERATING PRINCIPLE	DIFFUSE SENSOR	DIFFUSE SENSOR
SENSING RANGE MM	10	20




DATA		
Standard target	100 x 100 mm white	100 x 100 mm white
No-load supply current	≤ 15 mA	≤ 15 mA
Lens material	Sapphire glass	Sapphire glass
PNP Light-ON	LTS-1050-303-505	LTK-1050-303-506
NPN Light-ON	LTS-1050-301-505	LTK-1050-301-506
Other types available	PNP Dark-ON	

M5	M5	
DIFFUSE SENSOR	DIFFUSE SENSOR	כנועם
20	50	

		Glossary
100 x 100 mm white	100 x 100 mm white	~
≤ 15 mA	≤ 15 mA	
Sapphire glass	Glass	
LTS-1050-303-506	LTK-1050-303	=
LTS-1050-301-506	LTK-1050-301	Index

Photoelectric

Ultrasonic

Capacitive

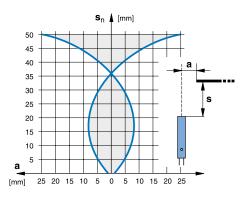
Safety

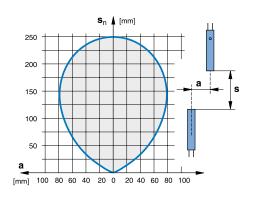
Connectivity

Accessories

Glossary

Index


PHOTOELECTRIC


CYLINDRICAL SUBMINIATURE

HOUSING SIZE	M5	M5
OPERATING PRINCIPLE	DIFFUSE SENSOR	THROUGH-BEAM SENSOR
SENSING RANGE MM	50	250

DATA		
Standard target	100 x 100 mm white	
No-load supply current	≤ 15 mA	\leq 5 mA (receiver) / \leq 10 mA (emitter)
Lens material	Glass	Glass
PNP Light-ON / Emitter	LTS-1050-303	LLS-1050-200 (emitter)
PNP Dark-ON		LLS-1050-204 (receiver)
Other types available	NPN Light-ON	NPN Dark-ON

M12 STANDARD SIZE FOR MULTIPLE USES

CYLINDRICAL MINIATURE

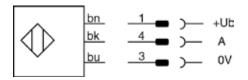
PHOTOELECTRIC SENSORS

KEY ADVANTAGES

- √ M12 miniature sensor series
- ✓ Rugged metal housing
- ✓ Accurate and speed-independent target detection; response time 0.5 msec (laser: 0.1 msec)
- ✓ Shock and vibration resistant due to fully vacuum potted electronics
- √ High system reserves (excess gain)
- ✓ Easy adjustment (due to visible red light)
- √ Laser sensor (protection class 2)

RANGE OVERVIEW	Distance mm	Diffuse	Reflex	Through- beam	Laser
	300	p. 191			
CYLINDRICAL	1500		p. 192		
MINIATURE	10,000			p. 192	
	50,000				p. 193

OVERVIEW

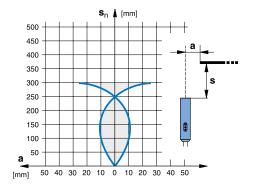

HOUSING SIZE	
OPERATING PRINCIPLE	
SENSING RANGE MM	

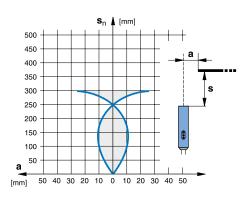
	1120	1121L
Housing material	Chrome-plated brass	Stainless steel V2A
Hysteresis	10 % typ.	10 % typ.
Degree of protection	IP 67	IP 67
Laser protection class		2
Supply voltage range	1036 VDC	10 36 VDC
Ambient temperature range	-25+55 °C / -13+131 °F	-10+50 °C / +14+122 °F
Output current	≤ 200 mA	≤ 200 mA
Output voltage drop	≤ 2 V	≤ 2 V
Switching frequency	≤ 1000 Hz	≤ 5000 Hz
Switching time	0.5 msec	0.1 msec
Max. ambient light halogen	5000 Lux	5000 Lux
Max. ambient light sun	10,000 Lux	10,000 Lux

PHOTOELECTRIC

WIRING DIAGRAM

PNP / NPN Light-ON / Dark-ON / Emitter


DATA	
Standard target	
No-load supply current	
Emitter	
Setup	
PNP Light-ON	
NPN Light-ON	
Other types available	


CYLINDRICAL MINIATURE

M12	M12
DIFFUSE SENSOR	DIFFUSE SENSOR
300	300

		G
100 x 100 mm white	100 x 100 mm white	Glossary
≤ 15 mA	≤ 15 mA	
LED red 660 nm	LED red 660 nm	
Potentiometer	Potentiometer	
LTK-1120-303	LTS-1120-303	≡
LTK-1120-301	LTS-1120-301	Index

Photoelectric

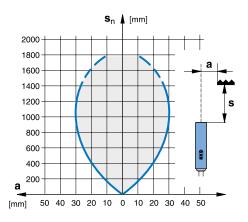
Ultrasonic

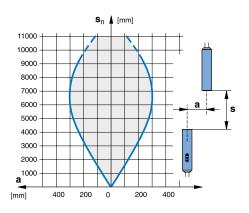
Capacitive

Connectivity

Accessories

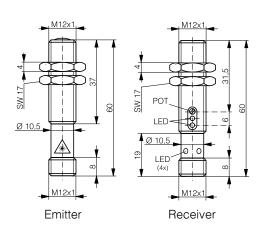
Glossary


PHOTOELECTRIC


CYLINDRICAL MINIATURE

HOUSING SIZE	M12	M12
OPERATING PRINCIPLE	REFLEX SENSOR	THROUGH-BEAM SENSOR
SENSING RANGE MM	1500	10,000

DATA		
Standard target / Reflector type	LXR-0000-084 (see page 247)	
No-load supply current	≤ 15 mA	≤ 15 mA
Emitter	LED red polarized 660 nm	LED red 660 nm
Setup	-	-
Emitter		LLS-1120-200 (emitter)
PNP Dark-ON	LRS-1120-304	LLS-1120-204 (receiver)
Other types available	NPN Dark-ON, cable version	NPN Dark-ON, cable version


CYLINDRICAL MINIATURE

M12 LASER

THROUGH-BEAM SENSOR

50,000

	GI
-	Glossary
≤ 10 mA	
Laser red pulsed 660 nm	
-	
LLS-1121L-200 (emitter)	=
LLS-1121L-204 (receiver)	Index
NPN Dark-ON, cable version	

Inductive

Ultrasonic

Capacitive

Connectivity

Accessories

M18 STANDARD SIZE, INCLUDING 90° SENSING

CYLINDRICAL **SMALL**

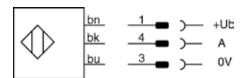
PHOTOELECTRIC SENSORS

KEY ADVANTAGES

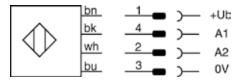
- √ Small sensor M18
- ✓ Models for lateral sensing
- ✓ Rugged metal housing
- ✓ Accurate and speed-independent target detection
- ✓ Shock and vibration resistant due to fully vacuum potted electronics
- √ High system reserves (excess gain)
- ✓ Easy adjustment (due to visible red light)
- √ Laser sensor (protection class 2)

RANGE OVERVIEW	Distance mm	Diffuse	Reflex	Through- beam	Background suppression	100	
CYLINDRICAL SMALL	120				p. 197-198		
	250					p. 203	
	600	p. 198-199				p. 203	
	2000		p. 200-201				
	20,000			p. 201-202			
	50,000			p. 204		p. 204	

OVERVIEW


SENSING RANGE MM	
OPERATING PRINCIPLE	
HOUSING SIZE	

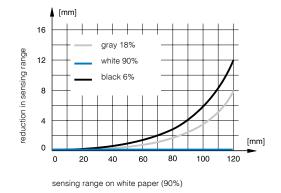
	1180 / 1180W	1180L
Housing material	Stainless steel V2A	Stainless steel V2A
Hysteresis	10 % typ.	10 % typ.
Degree of protection	IP 67	IP 67
Laser protection class	-	2
Supply voltage range	10 36 VDC	10 36 VDC
Ambient temperature range	-25+55 °C / -13+131 °F	-10+50 °C / +14+122 °F
Output current	≤ 200 mA	≤ 200 mA
Output voltage drop	≤ 2 V	≤ 2 V
Switching frequency	≤ 1000 Hz	LT: ≤ 1000 Hz/LL: ≤ 5000 Hz
Switching time	1 msec	0.5 msec
Max. ambient light halogen	5000 Lux	5000 Lux
Max. ambient light sun	10,000 Lux	10,000 Lux

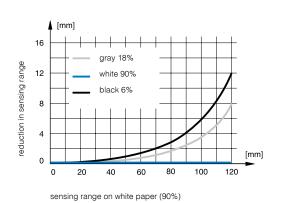

PHOTOELECTRIC

WIRING DIAGRAMS

PNP/NPN Light-ON / Dark-ON / Emitter

PNP/NPN Changeover


DATA
Standard target
No-load supply current
Emitter
Setup
PNP Light-ON
NPN Light-ON
Other types available


CYLINDRICAL SMALL

M18	M18
DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION	DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION
10 120	10 120

		Glo
100 x 100 mm white	100 x 100 mm white	Glossary
≤ 25 mA	≤ 25 mA	
LED red 680 nm	LED red 680 nm	
Potentiometer	Potentiometer	
LHK-1180-303	LHS-1180-303	<u> </u>
LHK-1180-301	LHS-1180-301	Index

Inductive

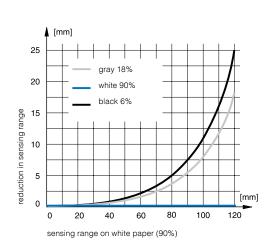
Photoelectric

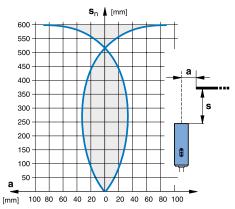
Ultrasonic

Capacitive

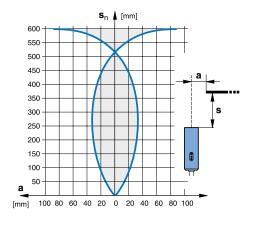
Connectivity

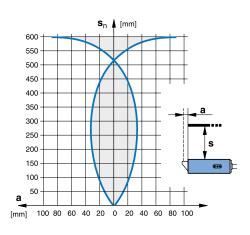
Accessories


PHOTOELECTRIC


CYLINDRICAL SMALL

HOUSING SIZE	M18W	M18
OPERATING PRINCIPLE	DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION	DIFFUSE SENSOR
SENSING RANGE MM	10 120	40 600


DATA		
Standard target	100 x 100 mm white	200 x 200 mm white
No-load supply current	≤ 25 mA	≤ 20 mA
Emitter	LED red 680 nm	LED red 630 nm
Setup	Potentiometer	Potentiometer
PNP Light-ON	LHS-1180W-303	LTK-1180-303
PNP Changeover		LTK-1180-103
NPN Changeover		LTK-1180-101
Other types available	NPN Light-ON, cable version	NPN Light-ON


CYLINDRICAL SMALL

M18 M18W	
DIFFUSE SENSOR DIFFUSE SE	ISOR
40 600 40 600	

200 x 200 mm white	200 x 200 mm white	Glossary
≤ 20 mA	≤ 20 mA	sary
LED red 630 nm	LED red 630 nm	
Potentiometer	Potentiometer	
LTS-1180-303	LTS-1180W-303	
LTS-1180-103	LTS-1180W-103	Index
LTS-1180-101	LTS-1180W-101	ex
NPN Light-ON	NPN Light-ON, cable version	

Ultrasonic

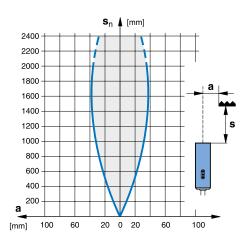
Capacitive

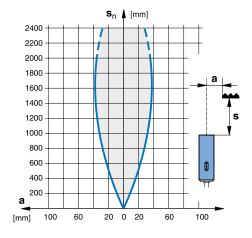
Connectivity

Accessories

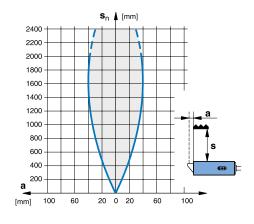
Glossarv

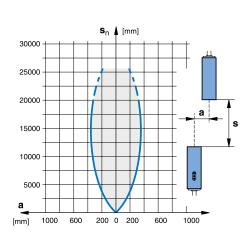
Index


PHOTOELECTRIC


CYLINDRICAL SMALL

HOUSING SIZE	M18	M18
OPERATING PRINCIPLE	REFLEX SENSOR	REFLEX SENSOR
SENSING RANGE MM	2000	2000


DATA		
Standard target / Reflector type	LXR-0000-084 (see page 247)	LXR-0000-084 (see page 247)
No-load supply current	≤ 15 mA	≤ 15 mA
Emitter	LED red polarized 660 nm	LED red polarized 660 nm
Setup	-	
PNP Dark-ON	LRK-1180-304	LRS-1180-304
Emitter		
PNP Changeover		
NPN Changeover		
Other types available	NPN Dark-ON	NPN Dark-ON


CYLINDRICAL SMALL

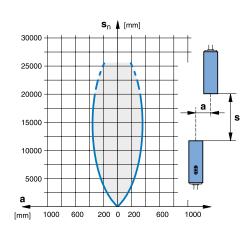
M18W	M18	11100
REFLEX SENSOR	THROUGH-BEAM SENSOR	כנועם
2000	20,000	

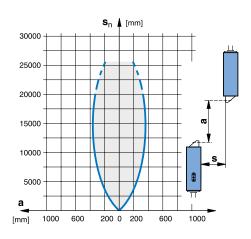
		SC
		sories
LXR-0000-084 (see page 247)	-	
≤ 15 mA	\leq 10 mA (receiver) / \leq 15 mA (emitter)	Glossary
LED red polarized 660 nm	LED red 660 nm	sary
-		
LRS-1180W-304		
	LLK-1180-000	
	LLK-1180-003 (receiver)	Index
	LLK-1180-001 (receiver)	ex
NPN Dark-ON, cable version		

Ultrasonic

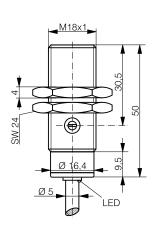
Capacitive

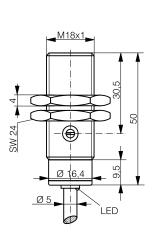
Connectivity


PHOTOELECTRIC


CYLINDRICAL SMALL

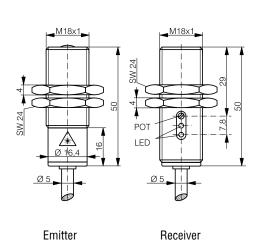
HOUSING SIZE	M18	M18W
OPERATING PRINCIPLE	THROUGH-BEAM SENSOR	THROUGH-BEAM SENSOR
SENSING RANGE MM	20,000	20,000

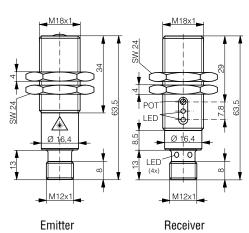

DATA		
Standard target		-
No-load supply current	\leq 10 mA (receiver) / \leq 15 mA (emitter)	\leq 10 mA (receiver) / \leq 15 mA (emitter)
Emitter	LED red 660 nm	LED red 660 nm
Setup	-	-
Emitter	LLS-1180-000	LLS-1180W-000
PNP Changeover	LLS-1180-003 (receiver)	LLS-1180W-003 (receiver)
NPN Changeover	LLS-1180-001 (receiver)	LLS-1180W-001 (receiver)
Other types available		


CYLINDRICAL SMALL

M18 LASER	M18 LASER	licu
DIFFUSE SENSOR	DIFFUSE SENSOR	CLIAG
40 250	60 600	
		-

100 x 100 mm white	100 x 100 mm white	Glos
≤ 20 mA	≤ 20 mA	Glossary
Laser red pulsed 660 nm	Laser red pulsed 660 nm	
Potentiometer	Potentiometer	
LTS-1180L-103-516	LTS-1180L-103	<u> </u>
LTS-1180L-101-516	LTS-1180L-101	Index
Cable version	Cable version	


PHOTOELECTRIC


CYLINDRICAL SMALL

HOUSING SIZE	M18 LASER	M18 LASER
OPERATING PRINCIPLE	THROUGH-BEAM SENSOR	THROUGH-BEAM SENSOR
SENSING RANGE MM	50,000	50,000

DATA		
Standard target	-	-
No-load supply current	≤ 10 mA	≤ 10 mA
Emitter	Laser red pulsed 660 nm	Laser red pulsed 660 nm
Setup	Potentiometer (receiver)	Potentiometer (receiver)
Emitter	LLK-1181L-000	LLS-1181L-000
PNP Changeover	LLK-1181L-003 (receiver)	LLS-1181L-003 (receiver)
NPN Changeover	LLK-1181L-001 (receiver)	LLS-1181L-001 (receiver)
Other types available		

SAVE SPACE, KEEP PERFORMANCE

CUBIC SUBMINIATURE

PHOTOELECTRIC SENSORS

KEY ADVANTAGES

C12 series

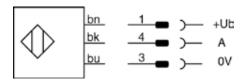
- ✓ Plastic housing, 13 mm x 21 mm / 27 mm x 7 mm
- ✓ Red pinpoint LED, small visible light spot
- ✓ Excellent background suppression up to 120 mm with 3-turn potentiometer
- ✓ Long sensing ranges

0507 series

- √ Rugged diffuse-type sensors in steel housing, 5 mm x 7 mm
- ✓ Accurate target detection due to cylindrical light beam
- √ Steel sensors with sapphire-glass sensing face, scratch and chemically resistant

RANGE OVERVIEW	Distance mm	Diffuse	Background suppression	Reflex	Through- beam	
	20	p. 213				
CUDIC	50	p. 213				
CUBIC	90	p. 213				
SUB-	120		p. 209			
MINIATURE	15 / 30		p. 209			
MINIMATORE	3000			p. 210		
	2000				p. 210	

OVERVIEW

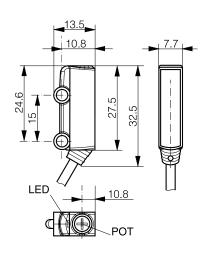

	C12
Housing material	ABS / PMMA
Light source	Red pinpoint LED 640 nm
Degree of protection	IP 67
Supply voltage range	10 30 VDC
Ambient temperature range	-20 +50 °C / -4 +122 °F
Output current	≤ 50 mA
Output voltage drop	≤ 2 V
Switching frequency	≤ 800 Hz
Switching time	0.6 msec

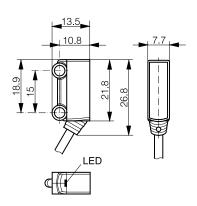
HOUSING SIZE	
OPERATING PRINCIPLE	
SENSING RANGE MM	

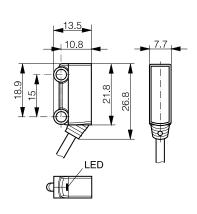
PHOTOELECTRIC

WIRING DIAGRAM

PNP/NPN Light-ON / Dark-ON / Emitter


DATA
Standard target
Setup
No load supply current
PNP Light-ON
NPN Light-ON
Other types available


□ 13 X 27 X 7 □ 13 X 21 X 7 **□** 13 X 21 X 7 DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION **DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION** 2 ... 120 1...15 1 ... 30



			GIOSSATY
100 x 100 mm white	100 x 100 mm white	100 x 100 mm white	
3-turn potentiometer	-	-	
≤ 20 mA	≤ 20 mA	≤ 20 mA	
LHR-C12PA-PLK-303	LHR-C12PA-NSK-303	LHR-C12PA-NMK-303	Index
LHR-C12PA-PLK-301	LHR-C12PA-NSK-301	LHR-C12PA-NMK-301	ex
0.2 m cable + connector M8	0.2 m cable + connector M8	0.2 m cable + connector M8	

Photoelectric

Ultrasonic

Capacitive

Safety

RFID

Connectivity

Accessories

Glossary

Index

CUBIC SUBMINIATURE HOUSING SIZE

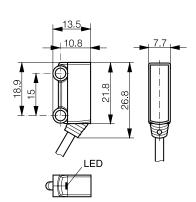
□ 13 X 21 X 7

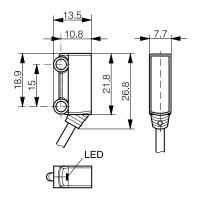
□ 13 X 21 X 7

OPERATING PRINCIPLE

REFLEX SENSOR

THROUGH-BEAM SENSOR


SENSING RANGE MM

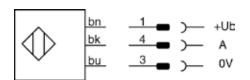

3000

2000

F	_
ī	
C	5
	7
	_

DATA		
Standard target	LXR-0001-064 (see page 249)	
Sensitivity adjustment	-	
No load supply current	≤ 20 mA	≤ 20 mA
Emitter		LLR-C12PA-NMK-300
PNP Dark-ON	LRR-C12PA-NMK-304	LLR-C12PA-NMK-304
NPN Dark-ON	LRR-C12PA-NMK-302	LLR-C12PA-NMK-302
Other types available	0.2 m cable + connector M8	0.2 m cable + connector M8

OVERVIEW

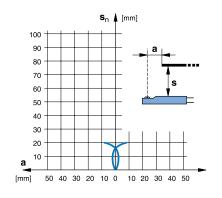

	0507
Housing material	Stainless steel V2A
Light source	IR LED 880 nm
Hysteresis	10 % typ.
Degree of protection	IP 67
Supply voltage range	10 30 VDC
Ambient temperature range	0 +55 °C / 32 +131 °F
Output current	≤ 100 mA
Output voltage drop	≤ 2 V
Switching frequency	≤ 250 Hz
Switching time	2.5 msec
Max. ambient light halogen	5000 Lux
Max. ambient light sun	10,000 Lux

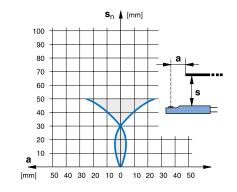
HOUSING SIZE MM	
OPERATING PRINCIPLE	
SENSING RANGE MM	

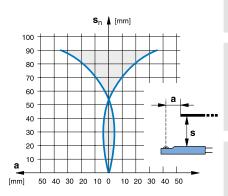
PHOTOELECTRIC

WIRING DIAGRAM

PNP/NPN Light-ON / Dark-ON


DATA	
Standard target	
No-load supply current	
Lens material	
PNP Light-ON	
NPN Light-ON	
Other types available	


□ 5 X 7 X 40	□ 5 X 7 X 40	□ 5 X 7 X 40
DIFFUSE SENSOR	DIFFUSE SENSOR	DIFFUSE SENSOR
20	50	90



			Glossary
100 x 100 mm white	100 x 100 mm white	100 x 100 mm white	
≤ 15 mA	≤ 15 mA	≤ 15 mA	
Sapphire glass	Sapphire glass	Sapphire glass	
LTK-0507-303-501	LTK-0507-303	LTK-0507-303-502	Index
LTK-0507-301-501	LTK-0507-301	LTK-0507-301-502	ex

Photoelectric

Inductive

Ultrasonic

Capacitive

Connectivity

Accessories

Glossary

Index

POWERFUL SENSORS IN MINIATURE HOUSING

CUBIC MINIATURE PHOTOELECTRIC SENSORS

KEY ADVANTAGES

C23 series

- ✓ Complete series, 20 mm x 30 mm x 10 mm
- ✓ Long sensing ranges
- √ Special optics for excellent background suppression characteristics
- ✓ Through-beam type with sensing range up to 30,000 mm, cross-talk immunity and alignment aid
- ✓ IO-Link on all PNP sensors

C23 Distance measuring sensors

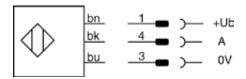
- ✓ IP 69K housing, 20 mm x 34 mm x 12 mm
- ✓ Two distance measurement ranges: 20...80 mm and 30...200 mm
- ✓ High precision and repeatability
- ✓ Settable analog range for optimum distance measurement
- ✓ Adjustable digital output for window of acceptance

RANGE OVERVIEW	Distance mm	Diffuse	Reflex	Through- beam	Background suppression	Analog	Distance
	600 / 1200	p. 225-226					
	2000 / 4000		p. 227-228				
	6000 / 12,000			p. 229			
CUDIC	200				p. 223-224		
CUBIC	10 100					p. 223	
MINIATURE	300				p. 217		
	1500	p. 218					
	8000		p. 219				
	30,000			p. 219			
	2080/30200						p. 221

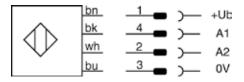
OVERVIEW

HOUSING SIZE

OPERATING PRINCIPLE


SENSING RANGE MM

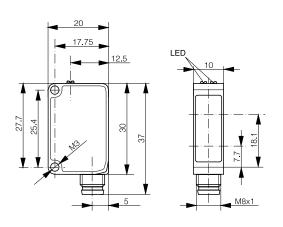
C23 Housing material ABS / PMMA Degree of protection **IP 67** 10 ... 30 VDC Supply voltage range -25 ... +65 °C / -13 ... +149 °F Ambient temperature range Output current (total both outputs) $\leq 100 \text{ mA}$ Output voltage drop $\leq 2 \; V$ Max. ambient light halogen 5000 Lux Max. ambient light sun 10,000 Lux Compatible mounting bracket See pages 242-244

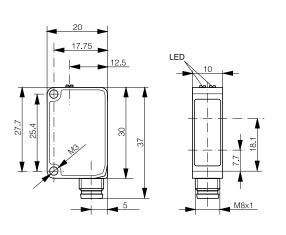

PHOTOELECTRIC

WIRING DIAGRAMS

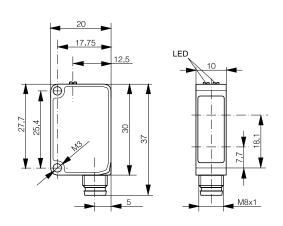
PNP/NPN Light-ON / Dark-ON / Emitter

PNP/NPN Light-ON / Dark-ON


DATA

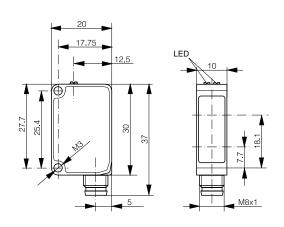

Standard target No-load supply current Light source Switching frequency (normal mode) Setup PNP Light-ON / IO-Link PNP Light-ON/Dark-ON / IO-Link PNP Light-ON/IO-Link+stability alarm NPN Light-ON NPN Light-ON / Dark-ON NPN Light-ON + stability alarm Other types available

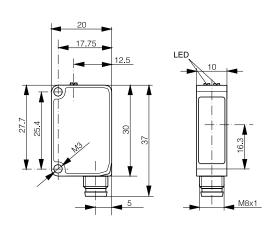
□ 20 X 30 X 10 □ 20 X 30 X 10 DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION 10 ... 300 10 ... 300


in
Accessories
S
Glossary
sary
Index
ex

HOUSING SIZE	□ 20 X 30 X 10	□ 20 X 30 X 10
OPERATING PRINCIPLE	DIFFUSE SENSOR	DIFFUSE SENSOR
SENSING RANGE MM	1500	1500

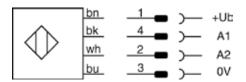
PHOTOELECTRIC


DATA			
JAIN .			
Standard target	200 x 200 mm white	200 x 200 mm white	
No-load supply current	≤ 15 mA	≤ 15 mA	
Light source	Red LED 630 nm	Red LED 630 nm	
Switching frequency (normal mode)) ≤ 1500 Hz	≤ 1500 Hz	
Setup	Potentiometer	IO-Link	
Emitter / IO Link		LTR-C23PA-NMS-403	
PNP Light-ON / IO-Link	LTR-C23PA-PMS-403		
PNP Light-ON/Dark-ON / IO-Link	LTR-C23PA-PMS-603		
PNP Light-ON/IO-Link+stability alarm	LTR-C23PA-PMS-60C		
NPN Light-ON	LTR-C23PA-PMS-301		
NPN Light-ON / Dark-ON	LTR-C23PA-PMS-101		
NPN Light-ON + stability alarm	LTR-C23PA-PMS-104		
	Cable version	Cable version	
PNP Light-ON/IO-Link+stability alarm NPN Light-ON NPN Light-ON / Dark-ON	LTR-C23PA-PMS-60C LTR-C23PA-PMS-301 LTR-C23PA-PMS-101 LTR-C23PA-PMS-104	Cable version	


□ 20 X 30 X 10 □ 20 X 30 X 10 **REFLEX SENSOR THROUGH-BEAM SENSOR** 8000 30,000

		Ä
LXR-0000-084 (see page 247)		Accessories
≤ 15 mA	\leq 9 mA (receiver) / \leq 7 mA (emitter)	ories
Red LED 630 nm	Red LED 630 nm	
≤ 1500 Hz	≤ 1000 Hz	
IO-Link	IO-Link	
	LLR-C23PA-NMS-400 (emitter)	Giossary
LRR-C23PA-NMS-404	LLR-C23PA-NMS-404	Ź
LRR-C23PA-NMS-603	LLR-C23PA-NMS-603	
LRR-C23PA-NMS-60D	LLR-C23PA-NMS-60D	
LRR-C23PA-NMS-302	LLR-C23PA-NMS-302	
LRR-C23PA-NMS-101	LLR-C23PA-NMS-101	Index
LRR-C23PA-NMS-10B	LLR-C23PA-NMS-10B	×
Cable version	Alignment aid, cable version	

OVERVIEW

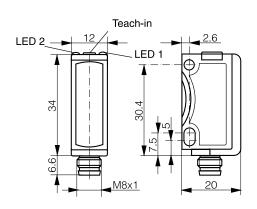

	C23 DISTANCE
Housing material	ABS / PMMA
Degree of protection	IP 67 / IP 69K
Supply voltage range	13 30 VDC
Ambient temperature range	-20 +60 °C / -4 +140 °F
No-load supply current	≤ 30
Output current	≤ 100
Output voltage drop	≤ 2 V
Switching frequency	≤ 1000 Hz
Response time (analog)	0.4 msec (80 mm) / 3.4 msec (200 mm)
Setup	Teach button
Compatible mounting bracket	See names 242-244

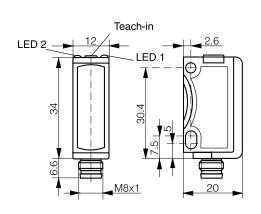
HOUSING SIZE	
OPERATING PRINCIPLE	
MEACHDEMENT DANCE MAA	

PHOTOELECTRIC

WIRING DIAGRAM

PNP/NPN Light-ON/Dark-ON + Analog 1 ... 10V



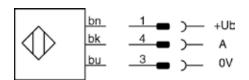

DATA
Light source
Light spot size
Resolution
Linearity
Repeatability
PNP Light/Dark-ON+analog 110V
NPN Light/Dark-ON+analog 110V
Other types available

□ 20 X 34 X 12 □ 20 X 34 X 12 **DISTANCE MEASURING SENSOR DISTANCE MEASURING SENSOR** 20 ... 80 30 ... 200

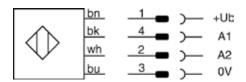
DTR-C23PB-TMS-129	DTR-C23PB-TLS-129	×
DTR-C23PB-TMS-139	DTR-C23PB-TLS-139	Index
≤ 0.4 mm	≤ 1 mm	
+/- 0.4 mm	+/- 2 mm	
0.12 mm	0.68 mm	
5 mm at 50 mm	7 mm at 60 mm	GIOSSATY
LED red 632 mm	LED red 632 mm	GIO

OVERVIEW

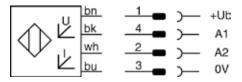
3#3#
PBTP (Crastin)
10 % typ.
IP 67
10 36 VDC / 15 36 VDC (LA#-3130-119)
-25 +55 °C / -13 +131 °F
≤ 200 mA / (LA)
≤ 2 V / (LA)
5000 Lux
10,000 Lux
Potentiometer
See page 245


OPERATING PRINCIPLE SENSING RANGE MM

HOUSING SIZE MM


PHOTOELECTRIC

WIRING DIAGRAMS


PNP/NPN Light-ON / Dark-ON / Emitter

PNP/NPN Changeover

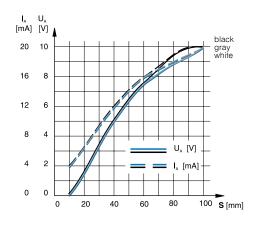
Analog

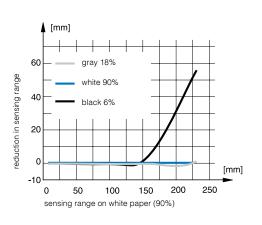
DATA Standard target No-load supply current Emitter Max. switching frequency Switching time Analog output PNP Changeover Other types available

□ 30 X 30 X 15

□ 30 X 30 X 15

WITH ANALOG OUTPUT


DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION


10 ... 100

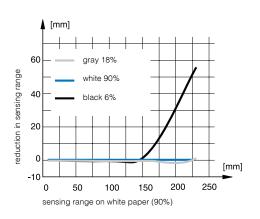
15 ... 200

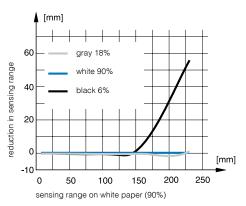
100 x 100 mm white	100 x 100 mm white	Glos
≤ 25 mA	≤ 25 mA	Glossary
LED red 660 nm	LED red 660 nm	
-	500 Hz	
·	1 msec	
LAS-3130-119		lno
	LHS-3130-103	Index
Cable version	NPN Changeover	

Inductive

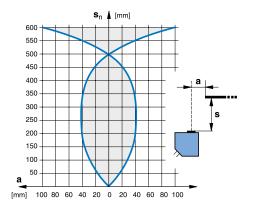
Ultrasonic

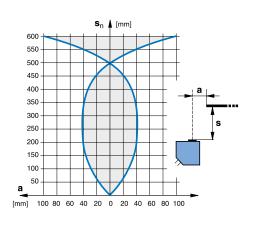
Capacitive


Connectivity


Accessories

HOUSING SIZE MM	□ 30 X 30 X 15	□ 30 X 30 X 15
OPERATING PRINCIPLE	DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION	DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION
SENSING RANGE MM	15 200	15 200




DATA		
Standard target	100 x 100 mm white	100 x 100 mm white
No-load supply current	≤ 25 mA	≤ 25 mA
Emitter	LED red 660 nm	LED red 660 nm
Max. switching frequency	500 Hz	500 Hz
Switching time	1 msec	1 msec
PNP Light-ON	LHK-3131-303	LHS-3131-303
NPN Light-ON	LHK-3131-301	LHS-3131-301
Other types available		

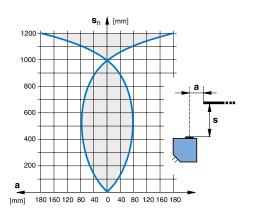
☐ 30 X 30 X 15	□ 30 X 30 X 15
DIFFUSE SENSOR	DIFFUSE SENSOR
600	600

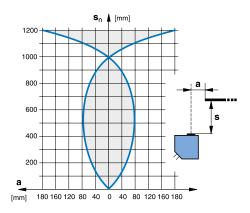
200 x 200 mm white	200 x 200 mm white	Glos
≤ 15 mA	≤ 15 mA	Glossary
IR LED 880 nm	IR LED 880 nm	
1000 Hz	1000 Hz	
0.5 msec	0.5 msec	
LTS-3031-303	LTK-3031-303	Index
LTS-3031-301	LTK-3031-301	dex

Ultrasonic

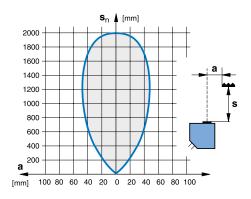
Capacitive

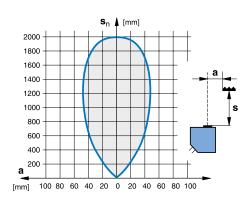
Connectivity


Accessories


Index

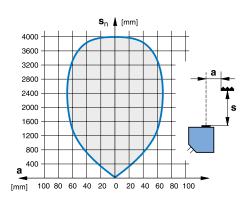
HOUSING SIZE MM	□ 30 X 30 X 15	□ 30 X 30 X 15	
OPERATING PRINCIPLE	DIFFUSE SENSOR	DIFFUSE SENSOR	
SENSING RANGE MM	1200	1200	

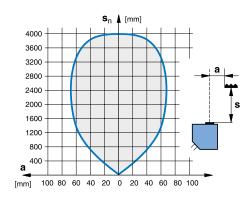

DATA		
Standard target / Reflector type	200 x 200 mm white	200 x 200 mm white
No-load supply current	≤ 20 mA	≤ 20 mA
Emitter	IR LED 880 nm	IR LED 880 nm
Max. switching frequency	1000 Hz	1000 Hz
Switching time	0.5 msec	0.5 msec
PNP Changeover	LTS-3030-103	LTK-3030-103
NPN Changeover	LTS-3030-101	LTK-3030-101
PNP Dark-ON		
Other types available		


CUBIC MINIATURE

□ 30 X 30 X 15 □ 30 X 30 X 15 **REFLEX SENSOR REFLEX SENSOR** 2000 2000

		Ö
		ories
		1
LXR-0000-084 (see page 247)	LXR-0000-084 (see page 247)	
≤ 15 mA	≤ 15 mA	Glossary
LED red polarized 660 nm	LED red polarized 660 nm	sary
1000 Hz	1000 Hz	
0.5 msec	0.5 msec	
		Index
LRS-3031-304	LRK-3031-304	ex
NPN Dark-ON	NPN Dark-ON	


PHOTOELECTRIC


CUBIC MINIATURE

HOUSING SIZE MM	□ 30 X 30 X 15	□ 30 X 30 X 15
OPERATING PRINCIPLE	REFLEX SENSOR	REFLEX SENSOR
SENSING RANGE MM	4000	4000

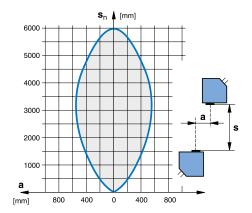
DATA		
Standard target / Reflector type	LXR-0000-084 (see page 247)	LXR-0000-084 (see page 247)
No-load supply current	≤ 20 mA	≤ 20 mA
Emitter	LED red polarized 660 nm	LED red polarized 660 nm
Max. switching frequency	1000 Hz	1000 Hz
Switching time	0.5 msec	0.5 msec
Emitter		
PNP Changeover	LRS-3030-103	LRK-3030-103
NPN Changeover	LRS-3030-101	LRK-3030-101
PNP Dark-ON		
Other types available		

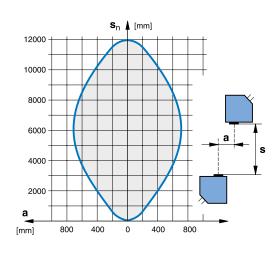
CUBIC MINIATURE

□ 30 X 30 X 15

□ 30 X 30 X 15

THROUGH-BEAM SENSOR


THROUGH-BEAM SENSOR


6000

12,000

		cessories
		ries
•	•	
\leq 10 mA (receiver) / \leq 15 mA (emitter)	\leq 10 mA (receiver) $/ \leq$ 15 mA (emitter)	
IR LED 880 nm	IR LED 880 nm	Glos
1000 Hz	1000 Hz	Glossary
0.5 msec	0.5 msec	
LLS-3031-200	LLS-3030-000	
	LLS-3030-003 (receiver)	
	LLS-3030-001 (receiver)	Index
LLS-3031-204 (receiver)		lex
NPN Dark-ON		

Inductive

Ultrasonic

Capacitive

Connectivity

Accessories

Index

EXCELLENT VALUE FOR DEMANDING APPLICATIONS

CUBIC SMALL

PHOTOELECTRIC SENSORS

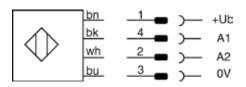
KEY ADVANTAGES

- ✓ Small sensor series with outstanding performance, 40 mm x 50 mm x 15 mm
- ✓ Ecolab tested and approved
- √ Sensing face of coated plastic
- ✓ Color sensor
- ✓ Contrast sensor for precise print mark detection
- √ IO-Link interface

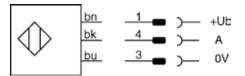
RANGE OVERVIEW	Distance mm	Diffuse	Reflex	Through- beam	Background suppression		Contrast
	12						p. 237
CUDIC	30 40					p. 237	
CUBIC	500				p. 233		
SMALL	1200	p. 233					
J	4000		p. 234				
	50,000			p. 234			

	4050
Housing material	РВТР
Hysteresis	≤ 10 % s _n
Degree of protection	IP 67
Supply voltage range	10 36 VDC
Ambient temperature range	-5 +55 °C / 23 +131 °F
Output current (total of both outputs)	≤ 200 mA
Output voltage drop	≤ 2 V
Max. ambient light halogen	5000 Lux
Max. ambient light sun	10,000 Lux
Compatible mounting bracket	See page 246

HOUSING SIZE MM


OPERATING PRINCIPLE

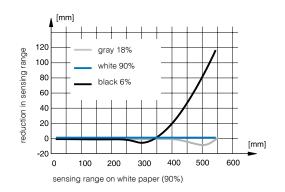
SENSING RANGE MM

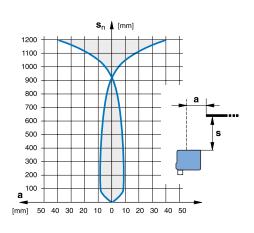

PHOTOELECTRIC

WIRING DIAGRAMS

PNP/NPN Changeover

Emitter


DATA Standard target No-load supply current Emitter Max. switching frequency Switching time Setup **PNP** Changeover NPN Changeover Other types available


CUBIC SMALL

□ 40 X 50 X 15	□ 40 X 50 X 15
DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION	DIFFUSE SENSOR
30 500	1200

		SO
		sories
100 x 100 mm white	200 x 200 mm white	
≤ 30 mA	≤ 25 mA	Glos
LED red 630 nm	LED red 630 nm	Glossary
500 Hz	1500 Hz	
1 msec	0.5 msec	
Potentiometer	Potentiometer	
LHS-4150-103	LTS-4150-103	Index
LHS-4150-101	LTS-4150-101	lex
Cable version	Cable version	

Ultrasonic

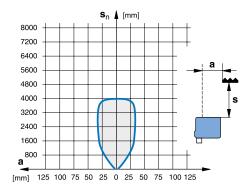
Capacitive

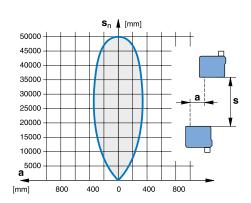
Connectivity

Access

CUBIC SMALL

HOUSING SIZE MM	□ 40 X 50 X 15	□ 40 X 50 X 15
OPERATING PRINCIPLE	REFLEX SENSOR	THROUGH-BEAM SENSOR
SENSING RANGE MM	4000	50,000



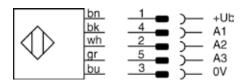


AUTOCOLLIMATION

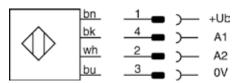
DATA		
Standard target/Reflector type	LXR-0000-084 (see page 247)	
No-load supply current	≤ 20 mA	≤ 15 mA
Emitter	LED red polarized 680 nm	LED red 630 nm
Max. switching frequency	1500 Hz	1500 Hz
Switching time	0.5 msec	0.5 msec
Setup	Potentiometer	Potentiometer (receiver)
PNP Changeover	LRS-4150-103	LLS-4150-003 (receiver)
Emitter		LLS-4150-000
Other types available	NPN Changeover, PNP/NPN Light-ON + Excess gain	NPN Changeover, PNP/NPN Light-ON + Excess gain

HOUSING SIZE MM

OPERATING PRINCIPLE


SENSING RANGE MM

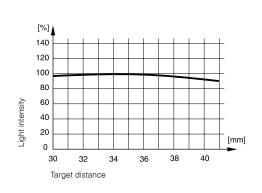
4050 COLOR	4050 CONTRAST
PBTP	PBTP
± 5 mm (tol. 3)	± 2 mm (min.)
IP 67	IP 67
10 30 VDC	10 30 VDC
-5 +55°C / 23 +131°F	-5 +55°C / 23 +131°F
≤ 200 mA	≤ 100 mA
≤ 2 V	≤ 2.5 V
4000 Hz	10,000 Hz
0.4 msec	50 μsec (micro)
5000 Lux	5000 Lux
10,000 Lux	10,000 Lux
See page 246	See page 246
	PBTP ± 5 mm (tol. 3) IP 67 10 30 VDC -5 $+55^{\circ}$ C / 23 $+131^{\circ}$ F ≤ 200 mA ≤ 2 V 4000 Hz 0.4 msec 5000 Lux $10,000$ Lux

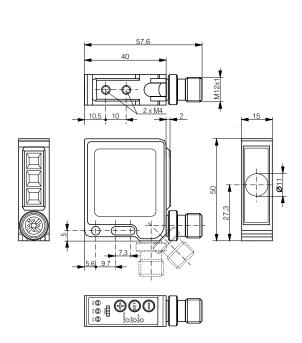

PHOTOELECTRIC

WIRING DIAGRAMS

3 X PNP Light-ON

PUSH-PULL + Teach / Switching mode selector


DATA Light source Light spot size (distance) No-load supply current Setup 3xPNP Light-ON PUSH-PULL / IO-Link Other types available


CUBIC SMALL

☐ 40 X 50 X 15	□ 40 X 50 X 15
COLOR SENSOR (DIFFUSE)	CONTRAST SENSOR (DIFFUSE)
30 40	12

		Glos
LED white	LED red, green, blue (autoselect)	Glossary
Ø 4 mm (35 mm)	1.5 x 3.5 mm (12 mm)	
≤ 35 mA	≤ 35 mA	
Teach button	Teach button / Teach input / IO-Link	
FTS-4155-303		Index
	KTS-4155-407	dex
Cable version	Cable version	

Photoelectric

Ultrasonic

Capacitive

Connectivity

Accessories

Glossary

Index

TOP QUALITY, RUGGED AND COST-EFFECTIVE

CUBIC COMPACT

PHOTOELECTRIC SENSORS

KEY ADVANTAGES

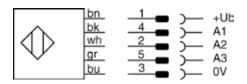
C55 distance measuring sensors

- ✓ Distance measurement up to 5000 mm, housing 50 mm x 50 mm x 23 mm
- √ High precision and repeatability
- ✓ Settable analog range for optimum distance measurement
- ✓ Adjustable digital output for window of acceptance
- ✓ Background suppression variant with 2 outputs
- ✓ Types available with enclosure rating IP 69K and Ecolab

RANGE OVERVIEW	Distance mm	Distance measuring	Background suppression
CUBIC			
	5000	p. 241	p. 241
COMPACT			

	C55 DISTANCE
Housing material	ABS / PMMA
Degree of protection	IP 67 / IP 69K, Ecolab
Supply voltage range	18 30 VDC
Ambient temperature range	-40 +60 °C / -40 +140 °F
No-load supply current	≤ 60 mA
Output current	≤ 100 mA
Output voltage drop	≤ 2 V
Switching frequency	\leq 250 Hz (DTL) / \leq 500 Hz (LHL)
Response time (analog)	2 msec (DTL) / 1 msec (LHL)
Setup	Teach button
Compatible mounting bracket	See page 245

HOUSING SIZE


OPERATING PRINCIPLE

MEASUREMENT RANGE MM

PHOTOELECTRIC

WIRING DIAGRAM

PNP/NPN auto-detect, Light-ON/Dark-ON + Analog + Teach

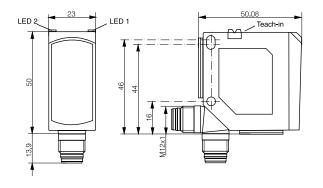
D	NTA CONTRACTOR OF THE PROPERTY
Lig	ht source
Lig	ht spot size
Re	solution
Lin	earity
	P/NPN auto-detect nalog 4 20 mA
	P/NPN auto-detect nalog 0 10 V
PN	P/NPN auto-detect (x2)
Oth	ner types available

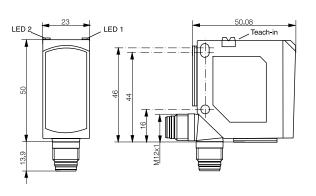
CUBIC COMPACT

□ 50 X 50 X 23

□ 50 X 50 X 23

DISTANCE MEASURING SENSOR


DIFFUSE SENSOR WITH BACKGROUND SUPPRESSION


100 ... 5000

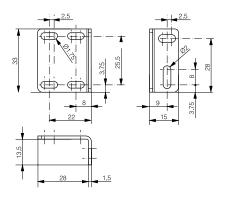
0 ... 5000

		Accessories
Laser class 1 red 650 mm	Laser class 1 red 650 mm	
5 mm x 4 mm at 3000 mm	5 mm x 4 mm at 3000 mm	_
< 5 mm	•	GIOSS
+/- 30 mm		dly
DTL-C55PA-TMS-119-502		
DTL-C55PA-TMS-119-503		
	LHL-C55PA-TMS-119-501	Manual

Inductive

Ultrasonic

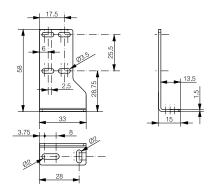
Capacitive


Connectivity

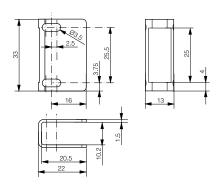
Accessories

PHOTOELECTRIC ACCESSORIES

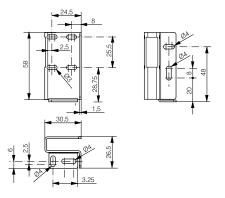
UNIVERSAL MOUNTING BRACKET


Material: stainless steel V2A Part reference: LXW-C23PA-000

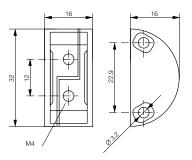
UNIVERSAL MOUNTING BRACKET


Material: stainless steel V2A Part reference: LXW-C23PA-001

UNIVERSAL MOUNTING BRACKET

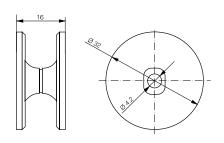

Material: stainless steel V2A Part reference: LXW-C23PA-002

UNIVERSAL MOUNTING BRACKET


Material: stainless steel V2A Part reference: LXW-C23PA-003

UNIVERSAL MOUNTING BRACKET

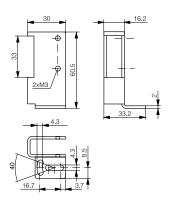
Material: aluminum anodised Part reference: LXW-C23PB-000



UNIVERSAL MOUNTING BRACKET

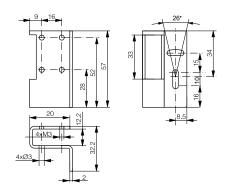
Material: aluminum

Part reference: LXW-C23PB-001

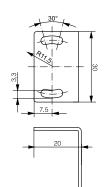


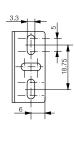
PHOTOELECTRIC ACCESSORIES

UNIVERSAL MOUNTING BRACKET


Material: stainless steel V2A Part reference: LXW-C23PB-002

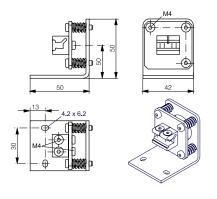
UNIVERSAL MOUNTING BRACKET


Material: stainless steel V2A Part reference: LXW-C23PB-003

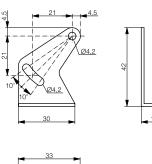


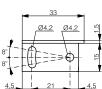
UNIVERSAL MOUNTING BRACKET

Material: nickel-plated steel Part reference: LXW-C23PB-004

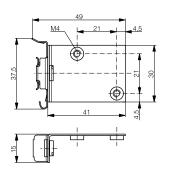


UNIVERSAL MOUNTING BRACKET


Material: stainless steel V2A Part reference: LXW-C55PA-000

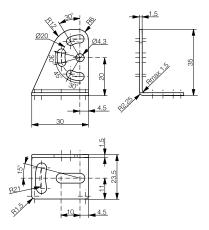


UNIVERSAL MOUNTING BRACKET


For 3#30 / 3#31 series Material: stainless steel V2A Part reference: LXW-3030-000

DIN-RAIL MOUNTING BRACKET

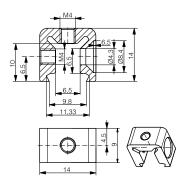
(TS35) for 3#30 / 3#31 series Material: stainless steel V2A Part reference: LXW-3030-001



PHOTOELECTRIC ACCESSORIES

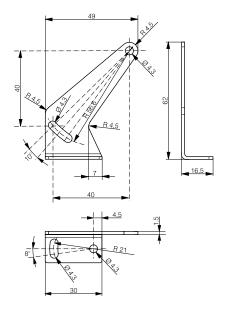
UNIVERSAL MOUNTING BRACKET

For 4050 series

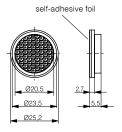

Material: stainless steel V2A Part reference: LXW-4050-000

CLAMP BRACKET

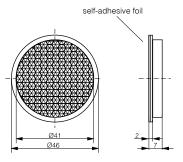
For 4050 series Material: aluminum


Part reference: LXW-4050-002

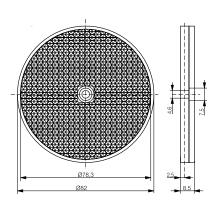
UNIVERSAL MOUNTING BRACKET


For 5050 series

Material: stainless steel V2A Part reference: LXW-5050-000

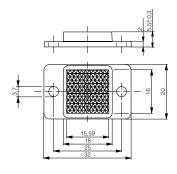

REFLECTOR Ø 25 MM

Part reference: LXR-0000-025


REFLECTOR Ø 46 MM

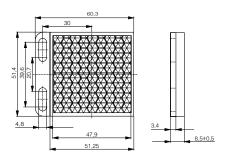
Part reference: LXR-0000-046

REFLECTOR Ø 82 MM

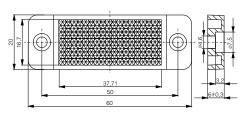

Reference reflector for all reflex sensors Part reference: LXR-0000-084

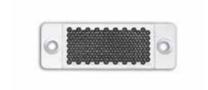
PHOTOELECTRIC ACCESSORIES

REFLECTOR 32 X 20 MM

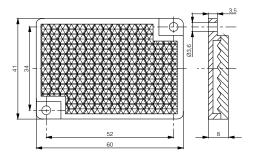

Part reference: LXR-0001-032

REFLECTOR 60 X 51 MM

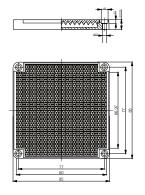

Part reference: LXR-0001-065



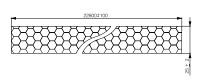
REFLECTOR 60 X 20 MM


Part reference: LXR-0001-062

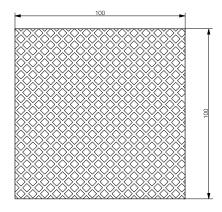
REFLECTOR 60 X 41 MM


Part reference: LXR-0001-064

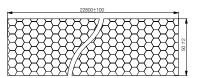
REFLECTOR 85 X 85 MM


Part reference: LXR-0001-088

REFLECTIVE ROLL 25 MM X 22.8 M


Part reference: LXR-0003-025

REFLECTIVE FOIL 100 X 100 MM


For all reflex sensors (IMOS IRF 6000) Part reference: LXR-0002-100

REFLECTIVE ROLL 50 MM X 22.8 M

Part reference: LXR-0003-050

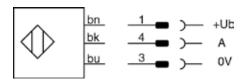
PROGRAM OVERVIEW

FAMILY	PRODUC	T RANGE		SUBMINIATURE									
	CYLINDRICAL												
	HOUSI	NG SIZE	No sensing head	Ø 2.3	M3	Ø 3.2	Ø 4						
ERS		Diffuse	p. 265	p. 265	p. 265								
<u> </u>		Through-beam	p. 268		p. 268	p. 268							
7		Cylindrical light beam					p. 271						
OPTICAL FIBERS	SYNTHETIC Fibers	Background suppression Liquid level											
O		monitoring Low and high temperatures Multi-beam											
		detection											
	GLASS FIBERS	Diffuse Through-beam											
		_				_							
FAMILY	PRODUC	T RANGE	MIN	NIATURE		SMAL	L						
		CUBIC											
S 2	SER	RIES		303#		3060							
AMPLIFIERS	HOUSII	NG SIZE	30 x	30 x 15 mm		31 x 60 x 10 mm							
MPL	MAX. DI	STANCE	1	120 mm		200 mm							
¥	SET	UP	Pot	entiometer		Potentiometer							
	FOR USE WITH SY	p.	255-256		p. 261								
	FOR USE WITH	GLASS FIBERS	p.	255-256									

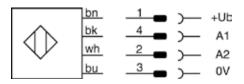
Inductive	SUBMINIATURE MINIATURE SMALL															
		CUI	CYLINDRICAL													
Photo	DIC	CUI														
Photoelectric	□ 18 x 32	□ 27 x 30	M8	Ø 8	M6	Ø 6	M5	M4								
					p. 266-267											
Ultrasonic					p. 270			p. 269-270								
C							p. 271									
Ca		p. 272	p. 273													
Capacitive			μ. 273		p. 274			p. 274								
	p. 273															
Sa				p. 277-278	p. 282	p. 277-278 p. 282										
Safety				p. 280-281		p. 279, 281		p. 282								
RFID				IBIC	CL											
Conr	040	40	360	3066 3360				30								
Connectivity	x 19 mm	40 x 40) x 10 mm	31 x 60	x 10 mm	31 x 60	x 10 mm	31 x 60								
	mm	150 mm		100	mm	200	mm	200								
Accessories	iometer	Potent	tiometer	Poten	10-Link	Teach /	ch-in	Tea								
ies				p.	0-261	p. 26	9-260	p. 25								
9	263	p. :														
Glossary	Ž.	CETT	TOOM	Ton.	1 46											
	Crar	Ton		TITE.				6								
Index	Tri	Titir	On	TO THE	Tim	Tim										
ex	7	TITA	TITTE	Cr.	TO CA	Trans		. 6								
4	ALC: UNITED BY A STATE OF THE PARTY OF THE P		CONTRACT AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN TRANSPORT NAMED IN THE PERSON NAMED IN TRANSPORT NAMED IN TR	Committee of the Commit		CONTRACT ANTHONY										

PROGRAM OVERVIEW

HOUSING SIZE	CEN	 NSINO	C DAI	MGE											PAGE
HOUSING SIZE	SEI	VOIIV	J KAI	NGE											PAGE
	12 mm	20 mm	45 mm	90 mm	70 mm	80 mm	140 mm	150 mm	200 mm	260 mm	550 mm	700 mm	900 mm	1800 mm	
SYNTHETIC OF	PTIC	AL	FIBE	RS											
DIFFUSE SENSING															
Double fiber (10 m)									60	20	0 mm				265
Ø 2.3 miniature						20	. 70 mr	n							265
M3 miniature						20	. 70 mr	n							265
M6 standard										20	0 mm				266-267
M6 flexible								45	5 15	0 mm					266-267
M6 luminous												260 n	nm		266
M6 coaxial									60	20	0 mm				266
THROUGH-BEAM SENSING															
Indiv. fiber (10 m)										200	70	0 mm			268
M3 miniature		60 200 mm								268					
Ø 3.2 standard 90°		60 200 mm								268					
M4 standard		200 700 mm									269				
M4 flexible													550	mm	269-270
M4 luminous											250		0 mm		269
M6 standard 90°												550	1800) mm	270
CYLINDRICAL LIGHT BEAM															
Ø 4 miniature									140 m						271
M5 miniature								60	140 m	ım					271
BACKGROUND SUPPRESSION															
27 x 30 mm flexible 90°		12 mr													272
27 x 30 mm flexible		12 mr	n												272
LIQUID LEVEL MONITORING															
M8															273
LOW & HIGH TEMPERATURES															
M4												150 .	550	mm	274
M6								45	5 15) mm					274
MULTI-BEAM															
18 x 32 mm								45	5 15	0 mm					273


	303#
Housing material	PBTP (Crastin)
Hysteresis	10 % typ.
Degree of protection	IP 67
Supply voltage range	10 36 VDC
Ambient temperature range	-25 +55 °C / -13 +131 °F
Output current (total both outputs)	≤ 200 mA
Output voltage drop	≤ 2 V
Max. ambient light halogen	5000 Lux
Max. ambient light sun	10,000 Lux
Setup	Potentiometer
Compatible mounting bracket	See page 275

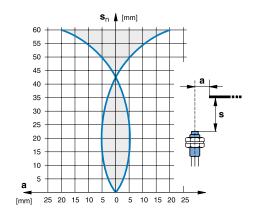
HOUSING SIZE MM	
OPERATING PRINCIPLE	
SENSING RANGE MM	

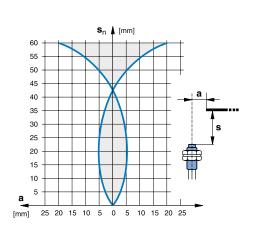

PHOTOELECTRIC

WIRING DIAGRAMS

PNP Light/Dark-ON / NPN Light-ON

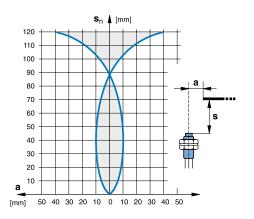
PNP/NPN Changeover


DATA Standard target No-load supply current **Emitter** Max. switching frequency Switching time PNP Light-ON PNP Dark-ON NPN Light-ON Other types available


CUBIC MINIATURE

□ 30 X 30 X 15	□ 30 X 30 X 15
FIBER-OPTIC AMPLIFIER	FIBER-OPTIC AMPLIFIER
60	60

		ssories
100 x 100 mm white	100 x 100 mm white	
≤ 15 mA	≤ 15 mA	GIC
LED red 660 nm	LED red 660 nm	Glossary
1000 Hz	1000 Hz	<
0.5 msec	0.5 msec	
LFS-3031-303	LFK-3031-303	
LFS-3031-304	LFK-3031-304	=
LFS-3031-301	LFK-3031-301	Index
NPN Dark-ON	NPN Dark-ON	


CUBIC MINIATURE

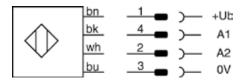
HOUSING SIZE MM	□ 30 X 30 X 15	□ 30 X 30 X 15
OPERATING PRINCIPLE	FIBER-OPTIC AMPLIFIER	FIBER-OPTIC AMPLIFIER
SENSING RANGE MM	120	120

PHOTOELECTRIC

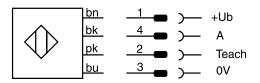
DATA		
Standard target	100 x 100 mm white	100 x 100 mm white
No-load supply current	≤ 20 mA	≤ 20 mA
Emitter	LED red 660 nm	LED red 660 nm
Max. switching frequency	1000 Hz	1000 Hz
Switching time	0.5 msec	0.5 msec
PNP Changeover	LFS-3030-103	LFK-3030-103
Other types available	NPN Changeover	NPN Changeover

HOUSING SIZE MM

OPERATING PRINCIPLE


SENSING RANGE MM

	3#6#
Housing material	PBTP (Crastin)
Hysteresis	10 % typ. / ≤ 5 % (3066)
Degree of protection	IP 64
Supply voltage range	10 30 VDC
Ambient temperature range	-25+55 °C/-13+131 °F // -5+55 °C/+23 +131 °F (3066)
Output current	≤ 200 mA
Output voltage drop	≤ 2 V
Max. ambient light halogen	5000 Lux
Max. ambient light sun	10,000 Lux
Compatible mounting bracket	See page 275


PHOTOELECTRIC

WIRING DIAGRAMS

PNP Light/Dark-ON switchable

PNP Light/Dark-ON with teach-in

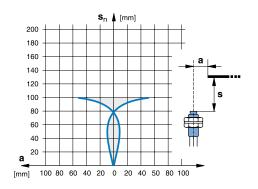
DATA Standard target No-load supply current Emitter Max. switching frequency Setup PNP Light-ON/Dark-ON switchable + Excess gain Other types available

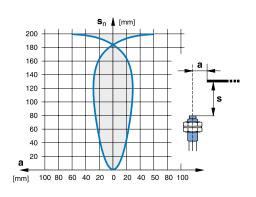
CUBIC SMALL

□ 31 X 60 X 10

□ 31 X 60 X 10

FIBER-OPTIC AMPLIFIER - BLUE LIGHT


FIBER-OPTIC AMPLIFIER


100

200

		G
100 x 100 mm white	100 x 100 mm white	Glossary
≤ 15 mA	≤ 25 mA	ary
LED blue 465 nm	LED red 680 nm	
1500 Hz	1500 Hz	
Potentiometer	Teach-in	
LFS-3360-103	LFK-3065-103	Index
NPN Light-ON/Dark-ON + Excess gain	NPN / Blue light devices / Increased switching frequency	

Inductive

Ultrasonic

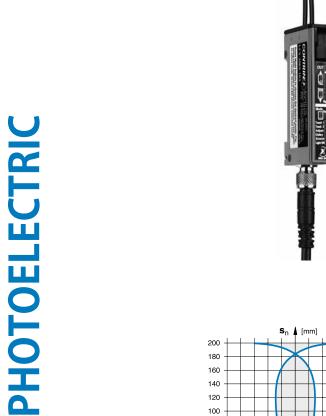
Capacitive

Connectivity

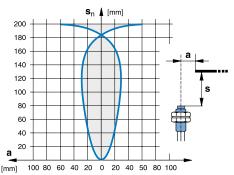
Accessories

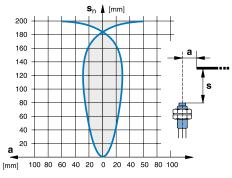
OPERATING PRINCIPLE

FIBER-OPTIC AMPLIFIER


□ 31 X 60 X 10

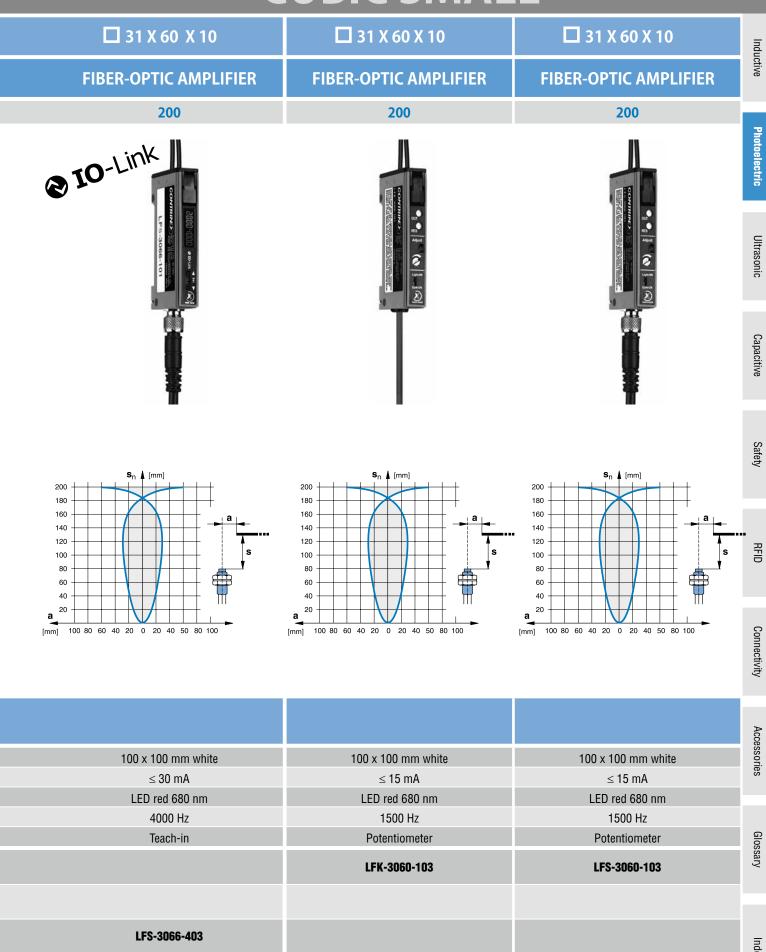
FIBER-OPTIC AMPLIFIER


SENSING RANGE MM


200

200

NPN Light-ON/Dark-ON switchable


	[11111] 100 00 00 10 20 0 20 10 00 00 100	[11111] 100 00 00 10 20 0 20 10 00 00 100
DATA		
Standard target	100 x 100 mm white	100 x 100 mm white
No-load supply current	≤ 25 mA	≤ 30 mA
Emitter	LED red 680 nm	LED red 680 nm
Max. switching frequency	1500 Hz	4000 Hz
Setup	Teach-in	Teach-in
PNP Light-ON/Dark-ON switchable + Excess gain	LFS-3065-103	
PNP Light-ON/Dark-ON switchable		LFS-3066-103

NPN Light-ON/Dark-ON switchable + Excess gain

PNP Light-ON/Dark-ON switchable + IO Link

Other types available

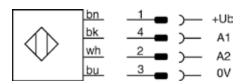
CUBIC SMALL

NPN Light-ON/Dark-ON switchable

+ Excess gain

NPN Light-ON/Dark-ON switchable

+ Excess gain


	4040
Housing material	PBTP (Crastin)
Hysteresis	10 % typ.
Degree of protection	IP 67
Supply voltage range	10 36 VDC
Ambient temperature range	-25 +55 °C / -13 +131 °F
Output current (total of both outputs)	≤ 200 mA
Output voltage drop	≤ 2 V
Switching frequency	≤ 1000 Hz
Switching time	0.5 msec
Max. ambient light halogen	5000 Lux
Max. ambient light sun	10,000 Lux
Compatible mounting bracket	See page 275

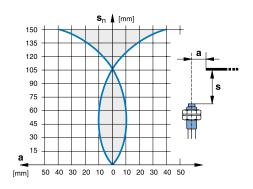
HOUSING SIZE MM	
OPERATING PRINCIPLE	
SENSING RANGE MM	

PHOTOELECTRIC

WIRING DIAGRAM

PNP/NPN Changeover

DATA	
Standard target	
No-load supply current	
Emitter	
Setup	
PNP Changeover	
Other types available	


CUBIC SMALL

□ 40 X 40 X 19

FIBER-OPTIC AMPLIFIER

150

	Glossary
100 x 100 mm white	
≤ 20 mA	
IR LED 880 nm	
Potentiometer	lno
LFS-4040-103	Index
NPN Changeover	

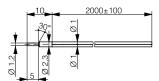
Capacitive

Connectivity

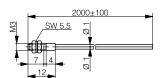
Accessories

- ✓ Very small dimensions
- ✓ Long sensing ranges
- ✓ Small bending radii
- Can be cut on site
- ✓ Large selection of types
- ✓ Mechanically rugged sensing head

TECHNICAL DATA	
Ambient temperature range	-25 +70°C / -55 +105°C*
	(-13 +158°F / -67 +221°F*)
Standard length	2 m \pm 0.1 m (other lengths on request)
Fiber bending radii:	
miniature / multi-beam	15 mm
standard / coaxial	25 mm
low & high temperature	25 mm
liquid level monitoring	25 mm
flexible / background suppression	2 mm
luminous (enhanced brightness)	40 mm
Bending radius of light-outlet tube	25 mm
Tensile load	30 N max.
Fiber material	PMMA
Sleeve material	Polyethylene
Sensing head material	Stainless steel V2A / PBTP**
Sensing head light-outlet tube material	Stainless steel V2A
Optical attenuation:	
standard / luminous (enhanced brightness)	0.2 dB / m max. at 660 nm
miniature / low & high temperature	0.2 dB / m max. at 660 nm
flexible / coaxial / multi-beam	0.3 dB / m max. at 660 nm
Angle of incidence	See data sheets
Tightening torque:	
M3	1 Nm
M4	2 Nm
M5	3 Nm
M6	4 Nm
M8	10 Nm


^{*} LFP-1002-020-002 / LFP-2002-020-002

^{**} LFP-1108 / 1109 / 1011-020


DIFFUSE SENSING

Dimensions: light emission on the left

Double fiber (10 m)	No sensing head	
Part reference	LFP-0005-100	
Sensing range	with series 3030	120 mm (2 m fiber, diffuse sensing)
	with series 3031	60 mm (2 m fiber, diffuse sensing)
	with series 3060/65/66	200 mm (2 m fiber, diffuse sensing)
Outside fiber	separable double fiber,	, ∅ 2.2 mm
Inner fiber	Ø 1.0 mm	
Special characteristics	Long sensing range	

Housing size: ∅ 2.3 mm	Miniature	
Part reference	LFP-1012-020	
Sensing range	with series 3030	40 mm (with 2 m fiber length)
	with series 3031	20 mm (with 2 m fiber length)
	with series 3060/65/66	70 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber,	Ø 1 mm*
Inner fiber	Ø 0.5 mm	
Special characteristics	Highest resolution	
* Adaptor included in delivery package		

Housing size: M3	Miniature	
Part reference	LFP-1001-020	
Sensing range	with series 3030	40 mm (with 2 m fiber length)
	with series 3031	20 mm (with 2 m fiber length)
	with series 3060/65/66	70 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber,	Ø 1 mm*
Inner fiber	Ø 0.5 mm	
Special characteristics	Highest resolution	
* Adaptor included in delivery	package	

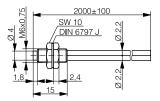
Oil		2000	0±100
▲ Ø 1,2	W W	SW 5,5	N N N N N N N N N N N N N N N N N N N
A	90	7 4	N

Housing size: M3	Miniature	
Part reference	LFP-1004-020	
Sensing range	with series 3030	40 mm (with 2 m fiber length)
	with series 3031	20 mm (with 2 m fiber length)
	with series 3060/65/66	70 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber, ∅ 1 mm*	
Inner fiber	∅ 0.5 mm	
Special characteristics	Sensing head with bendable light-outlet tube for ease	
	of positioning; highest resolution	
* Adaptor included in delivery package		

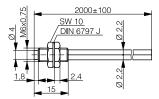
Index

Inductive

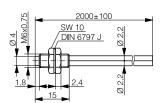
Ultrasonic

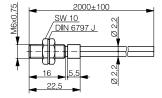

Capacitive

Connectivity

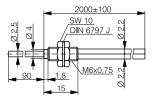

Accessories

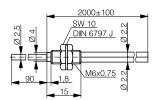
DIFFUSE SENSING


Dimensions: light emission on the left

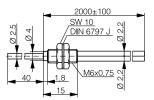

Housing size: M6	Standard	
Part reference	LFP-1002-020	
Sensing range	with series 3030	120 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	200 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber,	Ø 2.2 mm
Inner fiber	Ø 1.0 mm	
Special characteristics	Long sensing range	

Housing size: M6	Flexible	
Part reference	LFP-1102-020	
Sensing range	with series 3030	90 mm (with 2 m fiber length)
	with series 3031	45 mm (with 2 m fiber length)
	with series 3060/65/66	150 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber,	Ø 2.2 mm
Inner fiber	151 x Ø 75 μm	
Special characteristics	Very small bending radiu	IS


Housing size: M6	Luminous (enhanced	Luminous (enhanced brightness)	
Part reference	LFP-1202-020		
Sensing range	with series 3030	160 mm (with 2 m fiber length)	
	with series 3031	80 mm (with 2 m fiber length)	
	with series 3060/65/66	260 mm (with 2 m fiber length)	
Outside fiber	1 separable double fiber,	Ø 2.2 mm	
Inner fiber	Ø 1.5 mm		
Special characteristics	Longest sensing range		


Housing size: M6	Coaxial	
Part reference	LFP-1003-020	
Sensing range	with series 3030	120 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	200 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber,	Ø 2.2 mm
Inner fiber	Ø 1.0 mm	
Special characteristics	Coaxial arrangement of fibers,	
	thus axially symmetric be	eam

DIFFUSE SENSING


Dimensions: light emission on the left

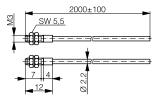
Housing size: M6	Standard	
Part reference	LFP-1005-020	
Sensing range	with series 3030	120 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	200 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber, \varnothing 2.2 mm	
Inner fiber	Ø 1.0 mm	
Special characteristics	Sensing head with bendable light-outlet tube for ease	
	of positioning	
	Long sensing range	

Housing size: M6	Flexible		
Part reference	LFP-1105-020		
Sensing range	with series 3030	90 mm (with 2 m fiber length)	
	with series 3031	45 mm (with 2 m fiber length)	
	with series 3060/65/66	150 mm (with 2 m fiber length)	
Outside fiber	1 separable double fiber,	1 separable double fiber, Ø 2.2 mm	
Inner fiber	151 x ∅ 75 μm		
Special characteristics	Sensing head with benda	able light-outlet tube for ease	
	of positioning		
	Very small bending radiu	ıs	

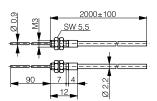
Housing size: M6	Standard		Connectivity
Part reference	LFP-1013-020		
Sensing range	with series 3030	120 mm (with 2 m fiber length)	
	with series 3031	60 mm (with 2 m fiber length)	Acc
	with series 3060/65/66	200 mm (with 2 m fiber length)	Accessories
Outside fiber	1 separable double fiber,	Ø 2.2 mm	ries
Inner fiber	Ø 1.0 mm		
Special characteristics	Sensing head with benda	able light-outlet tube for ease	
	of positioning		Ð
	Long sensing range		Glossa

Inductive

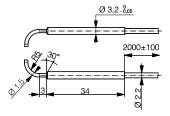
Ultrasonic


Capacitive

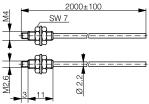
Index


THROUGH-BEAM SENSING

Dimensions: light emission on the left


Individual fiber (10 m)	No sensing head	
Part reference	LFP-0004-100	
Sensing range	with series 3030	400 mm (2 m fiber, thru-beam sensing)
	with series 3031	200 mm (2 m fiber, thru-beam sensing)
	with series 3060/65/66	700 mm (2 m fiber, thru-beam sensing)
Outside fiber	individual fiber, \varnothing 2.2	mm
Inner fiber	Ø 1.0 mm	
Special characteristics	Long sensing range	

Housing size: M3	Miniature	
Part reference	LFP-2001-020	
Sensing range	with series 3030	120 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	200 mm (with 2 m fiber length)
Outside fiber	2 individual fibers, Ø 2.2	2 mm
Inner fiber	Ø 0.5 mm	
Special characteristics	Highest resolution	


Housing size: M3	Miniature	
Part reference	LFP-2003-020	
Sensing range	with series 3030	120 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	200 mm (with 2 m fiber length)
Outside fiber	2 individual fibers, Ø 2.2	? mm
Inner fiber	Ø 0.5 mm	
Special characteristics	Sensing head with benda	able light-outlet tube for ease
	of positioning	
	Highest resolution	

Housing size: ∅ 3.2 mm	Standard 90°	
Part reference	LFP-2006-020	
Sensing range	with series 3030	120 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	200 mm (with 2 m fiber length)
Outside fiber	2 individual fibers, ∅ 2.2	? mm
Inner fiber	Ø 1.0 mm	
Special characteristics	Lateral sensing	

THROUGH-BEAM SENSING

Dimensions: light emission on the left

3 <u> </u> 3 11	Inner fiber	Ø 1.0 mm
	Special characteristics	Long sensing range
2000 : 100		
2000±100 SW 7	Housing size: M4	Flexible
	Part reference	LFP-2102-020

Housing size: M4

Part reference

Sensing range

Outside fiber

	2000±100
₹ 4	SW 7
#	
#	
M2,6 →	3 11 🔊

Housing size: M4	Flexible		
Part reference	LFP-2102-020		
Sensing range	with series 3030	300 mm (with 2 m fiber length)	
	with series 3031	150 mm (with 2 m fiber length)	
	with series 3060/65/66	550 mm (with 2 m fiber length)	
Outside fiber	2 individual fibers, \varnothing 2.2	2 individual fibers, \varnothing 2.2 mm	
Inner fiber	151 x ∅ 75 μm		
Special characteristics	Very small bending radio	JS	

Standard

LFP-2002-020

with series 3030

with series 3031

with series 3060/65/66

2 individual fibers, \varnothing 2.2 mm

	2000±100
⊼	SW 7
+	
÷	- ·
\pm	
٨	
M2,6	2.2
 	3 11 □

Luminous (enhanced brightness)	
LFP-2202-020	
with series 3030	500 mm (with 2 m fiber length)
with series 3031	250 mm (with 2 m fiber length)
with series 3060/65/66	900 mm (with 2 m fiber length)
2 individual fibers, Ø 2.2	mm
Ø 1.5 mm	
Longest sensing range	
	LFP-2202-020 with series 3030 with series 3031 with series 3060/65/66 2 individual fibers, Ø 2.2 Ø 1.5 mm

Δi	2000±100
M 4 1.	SW 7
A #	
_ 90	11 81 81 81 81 81 81 81 81 81 81 81 81 8
→ 90	

Housing size: M4	Standard			
Part reference	LFP-2004-020			
Sensing range	with series 3030	400 mm (with 2 m fiber length)		
	with series 3031	200 mm (with 2 m fiber length)		
	with series 3060/65/66	700 mm (with 2 m fiber length)		
Outside fiber	2 individual fibers, \varnothing 2.2	2 individual fibers, \varnothing 2.2 mm		
Inner fiber	Ø 1.0 mm			
Special characteristics	Sensing head with bendable light-outlet tube for ease			
	of positioning	of positioning		
	Long sensing range			

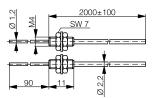
Inductive

Ultrasonic

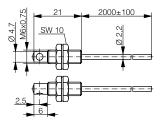
400 mm (with 2 m fiber length)

200 mm (with 2 m fiber length)

700 mm (with 2 m fiber length)


Capacitive

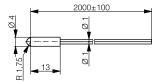
Connectivity


Accessories

THROUGH-BEAM SENSING

Dimensions: light emission on the left

Housing size: M4	Flexible		
Part reference	LFP-2104-020		
Sensing range	with series 3030	300 mm (with 2 m fiber length)	
	with series 3031	150 mm (with 2 m fiber length)	
	with series 3060/65/66	500 mm (with 2 m fiber length)	
Outside fiber	2 individual fibers, Ø 2.2 mm		
Inner fiber	151 x Ø 75 μm		
Special characteristics	Sensing head with benda	able light-outlet tube for ease	
	of positioning		
	Very small bending radiu	IS	

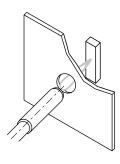


Housing size: M6	Standard 90°	
Part reference	LFP-2005-020	
Sensing range	with series 3030	1100 mm (with 2 m fiber length)
	with series 3031	550 mm (with 2 m fiber length)
	with series 3060/65/66	1800 mm (with 2 m fiber length)
Outside fiber	2 individual fibers, \varnothing 2.2	mm
Inner fiber	Ø 1.0 mm	
Special characteristics	Lateral sensing	
	Long sensing range	

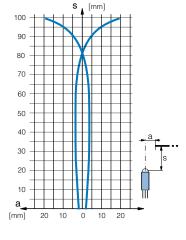
APPLICATION-SPECIFIC CYLINDRICAL LIGHT BEAM

Dimensions: light emission on the left

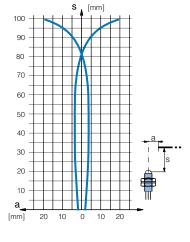
- ✓ Diffuse fibers particularly suitable for the detection of objects in recesses and behind covers (through holes and gaps)
- ✓ Extremely small sensing heads
- ✓ Quasi-cylindrical light beam
- Recessed mounting possible
- Sapphire glass optical parts, thus easy to clean



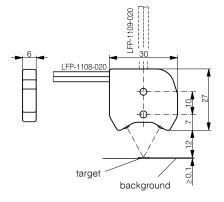
Housing size: Ø 4 mm	Miniature / spherical	optics
Part reference	LFP-1006-020	
Sensing range	with series 3030	100 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	140 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber,	Ø 1 mm*
Inner fiber	Ø 0.5 mm	
Special characteristics	Spherical optics for cyline	drical light beam
* Adaptor included in delivery package		


0,5	-	2000±100	
M5x0,5	SW 7	<u> </u>	
		.	
1,75	13	₽ 	
π -	→ 10 ►		

Housing size: M5	Miniature / spherical	optics
Part reference	LFP-1007-020	
Sensing range	with series 3030	100 mm (with 2 m fiber length)
	with series 3031	60 mm (with 2 m fiber length)
	with series 3060/65/66	140 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber,	Ø 1 mm*
Inner fiber	Ø 0.5 mm	
Special characteristics	Spherical optics for cylin	drical light beam
* Adaptor included in delivery package		


Response curves (with series 3030):

Detection through holes and gaps


LFP-1006-020

LFP-1007-020

APPLICATION-SPECIFIC BACKGROUND SUPPRESSION

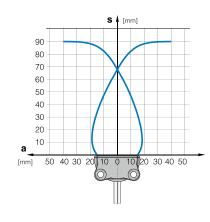
- ✓ Diffuse fiber with background suppression
- √ Factory adjusted operating distance of 12 mm
- ✓ Fully potted optical parts
- ✓ Recognition of position and thickness differences of only 0.1 mm
- ✓ Suitable for rough environments, thanks to glass-fiber reinforced PBTP housing
- Scratch resistant, easy-to-clean glass lenses

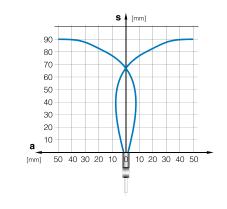
Housing size: ☐ 27 x 30	Background suppression / flexible / 90°
Part reference	LFP-1108-020
Operating distance	12 mm
Outside fiber	2 separate fibers, ∅ 2.2 mm
Inner fiber	151 x Ø 75 μm
Special characteristics	Lateral sensing
	Detectable height difference: 0.1 mm
	Minimum detectable target size: 0.15 mm ²
	Minimum detectable wire diameter: 0.1 mm

Housing size: ☐ 27 x 30	Background suppression / flexible
Part reference	LFP-1109-020
Operating distance	12 mm
Outside fiber	2 separate fibers, ∅ 2.2 mm
Inner fiber	151 x Ø 75 μm
Special characteristics	Axial sensing
	Detectable height difference: 0.1 mm
	Minimum detectable target size: 0.15 mm ²
	Minimum detectable wire diameter: 0.1 mm

light

SYNTHETIC OPTICAL FIBERS

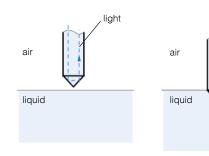

APPLICATION-SPECIFIC MULTI-BEAM


- Multi-beam diffuse fiber
- ✓ Detection of objects across the whole width of the sensing head (28 mm)
- Suitable for rough environments, thanks to PBTP housing
- ✓ Lateral mounting

5	18,3	2000±100
58 33 - 58 35	13	Ø 3,4 27 8 27 8 27 8 8

Housing size: ☐ 18 x 32	Multi-beam	
Part reference	LFP-1011-020	
Sensing range	with series 3030	90 mm (with 2 m fiber length)
	with series 3031	45 mm (with 2 m fiber length)
	with series 3060/65/66	150 mm (with 2 m fiber length)
Outside fiber	2 separate fibers, \varnothing 2.2	mm
Inner fiber	16 x Ø 0.265 mm	
Special characteristics	Wide detection range (28	3 mm)

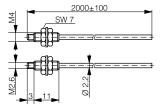
Response curves (with series 3030):

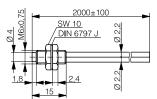

APPLICATION-SPECIFIC LIQUID LEVEL MONITORING

- Contact liquid detection (with the exception of white milky liquids)
- ✓ Fully potted optical parts
- ✓ Scratch-resistant, easy-to-clean glass prism
- ✓ Impervious (degree of protection: IP 68)

ŝ	M8X1		SW 13	2 0 2.2	====================================	
	<u> </u>	35 38	-	0 2.5	2000±100	_

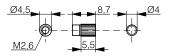
Housing size: M8	Liquid level monitoring
Part reference	LFP-1010-020
Outside fiber	2 separate fibers, Ø 2.2 mm
Inner fiber	Ø 0.5 mm
Special characteristics	Contact liquid detection


Operating principle:

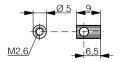

APPLICATION-SPECIFIC LOW & HIGH TEMPERATURES

Dimensions: light emission on the left

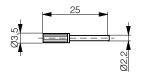
- ✓ Diffuse (LFP-1002-020-002) and through-beam (LFP-2002-020-002) fibers
- ✓ Extended temperature range : -55 ... +105°C / -67 ... +221°F
- ✓ Very small dimensions
- ✓ Long sensing ranges
- ✓ Small bending radii
- Can be cut on site

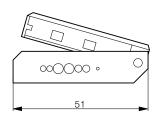


Housing size: M4	Low & high temperature resistant	
Part reference	LFP-2002-020-002	
Sensing range	with series 3030	300 mm (with 2 m fiber length)
	with series 3031	150 mm (with 2 m fiber length)
	with series 3060/65/66	550 mm (with 2 m fiber length)
Outside fiber	2 individual fibers, Ø 2.2 mm	
Inner fiber	Ø 1.0 mm	
Special characteristics	Extended temperature range of -55+105°C / -67+221°F	

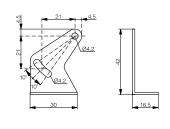


Housing size: M6	Low & high temperature resistant	
Part reference	LFP-1002-020-002	
Sensing range	with series 3030	90 mm (with 2 m fiber length)
	with series 3031	45 mm (with 2 m fiber length)
	with series 3060/65/66	150 mm (with 2 m fiber length)
Outside fiber	1 separable double fiber, ∅ 2.2 mm	
Inner fiber	Ø 1.0 mm	
Special characteristics	Extended temperature range of -55+105°C / -67+221°F	


ACCESSORIES

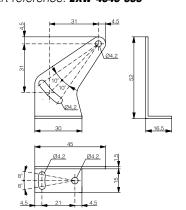

Axial front lens for increased sensing ranges		
Part reference	LFP-0001-000	
Sensing range	with series 3030	3000 mm (2 m fibers)
	with series 3031	1500 mm (2 m fibers)
	with series 3060/65/66	5000 mm (5 m fibers)
Can be used with	LFP-2#02-020	
Delivery package	1 pair	

90° front lens for increased sensing ranges		
Part reference	LFP-0002-000	
Sensing range	with series 3030	1000 mm (2 m fibers)
	with series 3031	500 mm (2 m fibers)
	with series 3060/65/66	1700 mm (2 m fibers)
Can be used with	LFP-2#02-020	
Delivery package	1 pair	

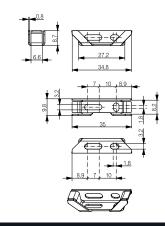

Adaptor	
Part reference	LFP-0003-000
Suitable for	fine synthetic optical fibers

Cutting tool		
Part reference	LXF-0000-000	
Suitable for	all synthetic optical fibers	

UNIVERSAL MOUNTING BRACKET


For 3#30 / 3#31 series Material: stainless steel V2A Part reference: LXW-3030-000

UNIVERSAL MOUNTING BRACKET


For 4040 series Material: stainless steel V2A Part reference: LXW-4040-000

UNIVERSAL MOUNTING BRACKET

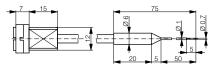
For 3#6# series

Material: stainless steel V2A Part reference: LXW-3060-000

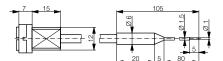
- ✓ For high ambient temperatures (models with chrome-plated brass) and silicone sleeves)
- Executions for extreme environmental conditions
- Small dimensions
- Long sensing ranges
- Suitable for the detection of smallest objects
- Large selection of types

TECHNICAL DATA		
Ambient temperature range	PVC sleeve	0 +70°C
		32 +158°F
	Wound brass sleeve	-25 +160°C
		-13 +320°F
	Silicone sleeve	-25 +150°C
		-13 +302°F
Protection degree of sensing head IP 65 (optional up to IP 68)		68)
Protection degree of optical fiber	PVC sleeve	IP 67
	Wound brass sleeve	IP 54
	Silicone sleeve	IP 67
Standard lengths	250 mm, 500 mm, 100	0 mm
Sensing head material	Aluminum	
Sensing head light-outlet tube material	Stainless steel	
Optical attenuation	0.01 dB / m max. at 880	0 nm
Angle of incidence	See data sheets	

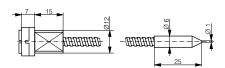
Depending on the type involved, glass optical fibers consist of 200 to 5000 individual fibers with diameters of 30 to 50 μm. The fiber bundle is surrounded by a sleeve, which can be selected according to the application:

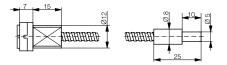

- PVC sleeve: the economical solution if no special stresses are to be expected.
- Wound sleeve of chrome-plated brass: for permanent operating temperatures of up to +160°C (+320°F), and maximum protection against crushing.
- Silicone sleeve with stainless-steel braiding for strain relief: for use in corrosive media, at temperatures of up to +150°C (+302°F), and where mechanical strain relief is required.

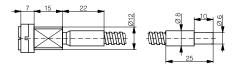
The sensing heads are available with straight or right-angle light outlets. The range comprises models for use as diffuse sensors (emitting and receiving fiber bundles in the same sleeve) and as through-beam sensors (the fiber bundles are in separate sleeves). In order to cover various application needs, a number of different bundle cross-sections are available: large cross-sections for long sensing ranges, small crosssections for short ranges, high resolutions, and detection of small objects.


AXIAL DIFFUSE SENSING

length of glass fiber in cm, standard lengths -025 (250 mm) / -050 (500 mm) / -100 (1000 mm)

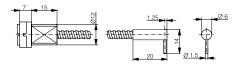

Dimensions: light emission on the right


Housing size: \varnothing 6 mm		
Part reference	LFG-1005-###	
Sensing range	with series 4040 5 mm	
Special characteristics	With bendable light-outlet tube	
	For the detection of smallest objects	
Sleeve	Silicone, Ø 4.7 mm	
Min. bending radius	20 mm / light-outlet tube: 5 mm	
	(do not bend the inner and outer 10 mm)	
Max. tensile load	10 N	

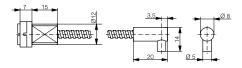

Housing size: ∅ 6 mm		
Part reference	LFG-1015-###	
Sensing range	with series 4040	15 mm
Special characteristics	With bendable light-out	let tube
	For places difficult to ac	cess
Sleeve	Silicone, ∅ 4.7 mm	
Min. bending radius	20 mm / light-outlet tube: 5 mm	
	(do not bend the inner a	and outer 10 mm)
Max. tensile load	10 N	

Housing size: ∅ 6 mm	
Part reference	LFG-1010-###
Sensing range	with series 4040 15 mm
Special characteristics	For the detection of smallest objects
	in places difficult to access
Sleeve	Wound sleeve of chrome-plated brass, \varnothing 4.7 mm
Min. bending radius	23 mm
Max. tensile load	20 N

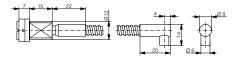
Housing size: ∅ 8 mm	
Part reference	LFG-1020-###
Sensing range	with series 4040 50 mm
Special characteristics	Multi-purpose medium sensing range model
Sleeve	Wound sleeve of chrome-plated brass, ∅ 4.7 mm
Min. bending radius	25 mm
Max. tensile load	50 N



Housing size: ∅ 8 mm		
Part reference	LFG-1030-###	
Sensing range	with series 4040	150 mm
Special characteristics	For long sensing range	
Sleeve	Wound sleeve of chrome-	-plated brass, ∅ 6.7 mm
Min. bending radius	25 mm	
Max. tensile load	50 N	


RADIAL DIFFUSE SENSING

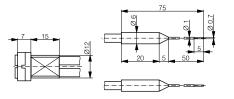
length of glass fiber in cm, standard lengths -025 (250 mm) / -050 (500 mm) / -100 (1000 mm)


Dimensions: light emission on the right

Housing size: ∅ 6 mm			
Part reference	LFG-2010-###		
Sensing range	with series 4040	15 mm	
Special characteristics	For the detection of smallest objects		
	in places difficult to access		
Leg length	14 mm		
Sleeve	Wound sleeve of chrome-plated brass, \varnothing 4.7 mm		
Min. bending radius	23 mm		
Max. tensile load	20 N		

Housing size: ∅ 8 mm	
Part reference	LFG-2020-###
Sensing range	with series 4040 30 mm
Special characteristics	Multi-purpose medium sensing range model
Leg length	14 mm
Sleeve	Wound sleeve of chrome-plated brass, ∅ 4.7 mm
Min. bending radius	25 mm
Max. tensile load	50 N

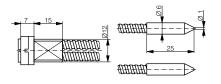
Housing size: ∅ 8 mm		
Part reference	LFG-2030-###	
Sensing range	with series 4040	150 mm
Special characteristics	For long sensing range	
Leg length	14 mm	
Sleeve	Wound sleeve of chrome	-plated brass, ∅ 6.7 mm
Min. bending radius	25 mm	
Max. tensile load	50 N	


Index

GLASS OPTICAL FIBERS

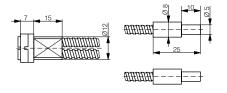
AXIAL THROUGH-BEAM SENSING

length of glass fiber in cm, standard lengths -025 (250 mm) / -050 (500 mm) / -100 (1000 mm)

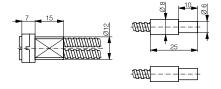

Dimensions: light emission on the right

Housing size: \emptyset 6 mm			
Part reference	LFG-3005-###		
Sensing range	with series 4040	50 mm	
Special characteristics	With bendable light-outle	With bendable light-outlet tube	
	For the detection of smallest objects		
Sleeve	Silicone, Ø 4.7 mm		
Min. bending radius	20 mm / light-outlet tube: 5 mm		
	(do not bend the inner and outer 10 mm)		
Max. tensile load	10 N		

Housing size: ∅ 6 mm			
Part reference	LFG-3015-###		
Sensing range	with series 4040	200 mm	
Special characteristics	With bendable light-o	With bendable light-outlet tube	
	For places difficult to	For places difficult to access	
Sleeve	Silicone, ∅ 4.7 mm		
Min. bending radius	20 mm / light-outlet t	20 mm / light-outlet tube: 5 mm	
	(do not bend the inne	er and outer 10 mm)	
Max. tensile load	10 N		



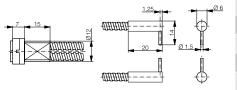
Housing size: ∅ 6 mm			
Part reference	LFG-3010-###		
Sensing range	with series 4040	200 mm	
Special characteristics	For the detection of sm	For the detection of smallest objects	
	in places difficult to ac	in places difficult to access	
Sleeve	Wound sleeve of chror	me-plated brass, Ø 4.7 mm	
Min. bending radius	23 mm		
Max. tensile load	20 N		


AXIAL THROUGH-BEAM SENSING

length of glass fiber in cm, standard lengths -025 (250 mm) / -050 (500 mm) / -100 (1000 mm)

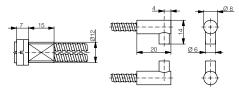
Dimensions: light emission on the right

Housing size: ∅ 8 mm		
Part reference	LFG-3020-###	
Sensing range	with series 4040	800 mm
Special characteristics	Multi-purpose mediu	m sensing range model
Sleeve	Wound sleeve of chro	ome-plated brass, Ø 4.7 mm
Min. bending radius	25 mm	
Max. tensile load	50 N	



Housing size: ∅ 8 mm		
Part reference	LFG-3030-###	
Sensing range	with series 4040	1500 mm
Special characteristics	For long sensing range	
Sleeve	Wound sleeve of chrome-	-plated brass, ∅ 4.7 mm
Min. bending radius	25 mm	
Max. tensile load	50 N	

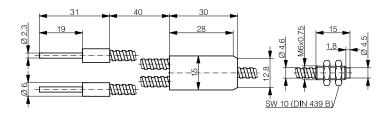
RADIAL THROUGH-BEAM SENSING


length of glass fiber in cm, standard lengths -025 (250 mm) / -050 (500 mm) / -100 (1000 mm)

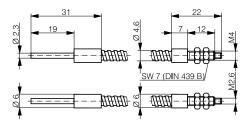
Dimensions: light emission on the right

Housing size: ∅ 6 mm		
Part reference	LFG-4010-###	
Sensing range	with series 4040 200 mm	
Special characteristics	For the detection of smallest objects	
	in places difficult to access	
Leg length	14 mm	
Sleeve	Wound sleeve of chrome-plated brass, Ø 4.7 mm	
Min. bending radius	23 mm	
Max. tensile load	20 N	

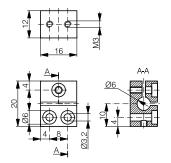
Housing size: ∅ 8 mm Part reference LFG-4020-### Sensing range with series 4040 800 mm Special characteristics Multi-purpose medium sensing range model Leg length 14 mm Sleeve Wound sleeve of chrome-plated brass, \varnothing 4.7 mm Min. bending radius 25 mm 50 N Max. tensile load

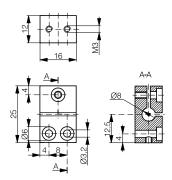


Housing size: ∅ 8 mm		
Part reference	LFG-4030-###	
Sensing range	with series 4040	1500 mm
Special characteristics	For long sensing rang	ge
Leg length	14 mm	
Sleeve	Wound sleeve of chro	ome-plated brass, Ø 4.7 mm
Min. bending radius	25 mm	
Max. tensile load	50 N	

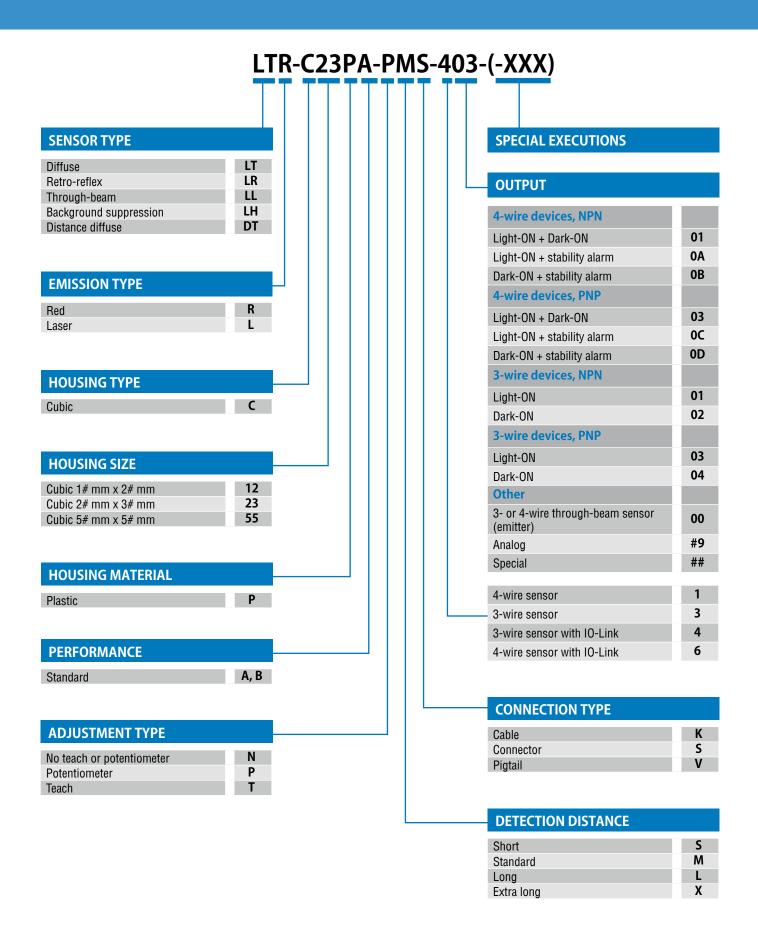

Dimensions: light emission on the right

FOR SERIES 3030 / 3031 SENSORS (CONNECTION AS WITH SYNTHETIC FIBERS)


Housing size: M6	Diffuse sensing	
Part reference	LFG-1022-050	
Sensing range	with series 3030	120 mm
	with series 3031	60 mm
Special characteristics	For difficult environmental conditions	
Sleeve	Wound sleeve of chrome	-plated brass, ∅ 4.6 mm
Min. bending radius	25 mm	
Max. tensile load	20 N	


Housing size: M4	Through-beam sensing	
Part reference	LFG-3022-050	
Sensing range	with series 3030	500 mm
	with series 3031	250 mm
Special characteristics	For difficult environmental conditions	
Sleeve	Wound sleeve of chrome-plated brass, ∅ 4.6 mm	
Min. bending radius	25 mm	
Max. tensile load	20 N	

ACCESSORIES


For ∅ 6 mm heads	Fiber mounting clamp
Part reference	LXG-0000-060
Characteristics	Mounting clamp for axial and radial light-outlet tubes
Material	Nickel-plated brass
Suitable for the following fibers	LFG-1005-### / LFG-1015-###
	LFG-1010-### / LFG-2010-###
	LFG-3005-### / LFG-3015-###
	LFG-3010-### / LFG-4010-###

Fiber mounting clamp
XG-0000-080
Nounting clamp for axial and radial light-outlet tubes
lickel-plated brass
.FG-1020-### / LFG-1030-###
.FG-2020-### / LFG-2030-###
.FG-3020-### / LFG-3030-###
.FG-4020-### / LFG-4030-###

PHOTOELECTRIC SENSORS

PHOTOELECTRIC SENSORS

LTS-1180-303 (-XXX)

COLOR SENSOR	F	_
SENSOR TYPE		
With analog output	Α	
For fibers / fiber	F	
With background suppression	Н	
Through-beam sensor	L	
Reflex sensor	R	
Diffuse sensor	Т	
Accessories	X	
Device with cable	K	
Device with capic	S	
Device with screw terminal	T	
Device with molded connector	V	
Synthetic optical fiber	P	
Glass optical fiber	G	
Reflector	R	
	F	
Cutting tool Mounting bracket	W	
Mounting bracket	VV	
SERIES		
Cylindrical devices		
Ø 4	1040	
M5	1050	
M12	1120	
M12 laser	112#L	
M18	1180	
M18 laser	118#L	
M18 with lateral light emission	1180W	
Rectangular devices		
5 x 7 mm	0507	
30x30 mm (high-performance)	3#30	
30x30 mm (standard)	3#31	
31x60 mm (standard)	3#60	
31x60 mm (teach-in)	3#65	
31x60 mm (teach-in & digital display)	3066	
31x60 mm (high frequency)	326#	
31x60 mm (blue light)	336#	
40 x 40 mm	4040	
40 x 50 mm	4#5#	
Synthetic optical fibers		
Diffuse sensor	1###	
Through-beam sensor	2###	
Miniature / standard / coaxial	#0##	
Flexible	#1##	
Luminous (enhanced brightness)	#2##	
Glass optical fibers		
Axial diffuse sensor	1###	
Radial diffuse sensor	2###	
Axial through-beam sensor	3###	
Radial through-beam sensor	4###	
	A	

Accessories

0###

PHOTOELECTRIC SENSOR

XXX)		
Щ	SPECIAL EXECUTIONS	
	EXECUTION	
	3- or 4-wire through-beam sensor (emitter)	00
	4-wire devices, NPN, output:	
	Changeover or switchable	01
	Light-ON and excess gain	02
	4-wire devices, PNP, output:	
ĺ	Changeover or switchable	03
	Light-ON and excess gain	04
ı	AC/DC devices	
	Through-beam sensor (emitter)	10
	With relay output	15
	With relay output and timer	65
	3-wire devices, NPN, output:	
	Light-ON	01
	Dark-ON	02
	3-wire devices, PNP, output:	
	Light-ON	03
ı	Dark-ON	04
	With built-in timer	+50
	DIMENSIONS	
	Synthetic optical fibers	
	Length in dm (2 m)	020
	Glass optical fibers	
ĺ	Length in cm (0.25 m)	025
	Length in cm (0.50 m)	050
	Length in cm (1 m)	100
	Accessories	
	General	###
	4-wire through-beam sensor	0
_	4-wire basic device	1
	0; #1	2

3-wire through-beam sensor

3-wire basic device

With IO-Link

2

3

PHOTOELECTRIC SENSORS

Part reference Chap	oter/page	Part reference	Chapter/page	Part reference	Chapter/page
DTL-C55PA-TMS-119-502	2/241	LLS-1180W-000	2/202	LTR-C23PA-PMS-603	2/218
DTL-C55PA-TMS-119-503	2/241	LLS-1180W-001 (receive		LTS-1040-301	2/183
DTR-C23PB-TLS-129	2/221	LLS-1180W-003 (receive		LTS-1040-301-505	2/181
DTR-C23PB-TLS-139	2/221	LLS-1181L-000	2/204	LTS-1040-303	2/183
DTR-C23PB-TMS-129 DTR-C23PB-TMS-139	2/221 2/221	LLS-1181L-001 (receiver LLS-1181L-003 (receiver		LTS-1040-303-505 LTS-1050-301-505	2/181 2/184
FTS-4155-303	2/237	LLS-3030-000	2/229	LTS-1050-301-506	2/185
KTS-4155-407	2/237	LLS-3030-001 (receiver)		LTS-1050-303	2/186
LAS-3130-119	2/223	LLS-3030-003 (receiver)		LTS-1050-303-505	2/184
LHK-1180-301	2/197	LLS-3031-200	2/229	LTS-1050-303-506	2/185
LHK-1180-303 LHK-3131-301	2/197 2/224	LLS-3031-204 (receiver) LLS-4150-000	2/229 2/234	LTS-1120-301 LTS-1120-303	2/191 2/191
LHK-3131-303	2/224	LLS-4150-003 (receiver)		LTS-1180-101	2/199
LHL-C55PA-TMS-119-501	2/241	LRK-1180-304	2/200	LTS-1180-103	2/199
LHR-C12PA-NMK-301	2/209	LRK-3030-101	2/228	LTS-1180-303	2/199
LHR-C12PA-NMK-303	2/209	LRK-3030-103	2/228	LTS-1180L-101	2/203
LHR-C12PA-NSK-301 LHR-C12PA-NSK-303	2/209 2/209	LRK-3031-304 LRR-C12PA-NMK-302	2/227 2/210	LTS-1180L-101-516 LTS-1180L-103	2/203 2/203
LHR-C12PA-PLK-301	2/209	LRR-C12PA-NMK-304	2/210	LTS-1180L-103-516	2/203
LHR-C12PA-PLK-303	2/209	LRR-C23PA-NMS-10B	2/219	LTS-1180W-101	2/199
LHR-C23PA-PMS-10A	2/217	LRR-C23PA-NMS-60D	2/219	LTS-1180W-103	2/199
LHR-C23PA-PMS-60C	2/217	LRR-C23PA-NMS-101	2/219	LTS-1180W-303	2/199
LHR-C23PA-PMS-101 LHR-C23PA-PMS-301	2/217 2/217	LRR-C23PA-NMS-302 LRR-C23PA-NMS-404	2/219 2/219	LTS-3030-101 LTS-3030-103	2/226 2/226
LHR-C23PA-PMS-403	2/217	LRR-C23PA-NMS-603	2/219	LTS-3031-301	2/225
LHR-C23PA-PMS-603	2/217	LRS-1120-304	2/192	LTS-3031-303	2/225
LHR-C23PA-TMS-10A	2/217	LRS-1180-304	2/200	LTS-4150-101	2/233
LHR-C23PA-TMS-60C	2/217	LRS-1180W-304	2/201	LTS-4150-103	2/233
LHR-C23PA-TMS-101 LHR-C23PA-TMS-301	2/217 2/217	LRS-3030-101 LRS-3030-103	2/228 2/228	LXR-0000-025 LXR-0000-046	2/247 2/247
LHR-C23PA-TMS-403	2/217	LRS-3031-304	2/227	LXR-0000-040	2/247
LHR-C23PA-TMS-603	2/217	LRS-4150-103	2/234	LXR-0001-032	2/248
LHS-1180-301	2/197	LTK-0507-301	2/213	LXR-0001-062	2/248
LHS-1180-303	2/197	LTK-0507-301-501	2/213	LXR-0001-064	2/248 2/248
LHS-1180W-303 LHS-3130-103	2/198 2/223	LTK-0507-301-502 LTK-0507-303	2/213 2/213	LXR-0001-065 LXR-0001-088	2/248 2/249
LHS-3131-301	2/224	LTK-0507-303-501	2/213	LXR-0002-100	2/249
LHS-3131-303	2/224	LTK-0507-303-502	2/213	LXR-0003-025	2/249
LHS-4150-101	2/233	LTK-1040-301	2/182	LXR-0003-050	2/249
LHS-4150-103 LLK-1180-000	2/233 2/201	LTK-1040-301-505 LTK-1040-301-506	2/181 2/182	LXW-3030-000 LXW-3030-001	2/245 2/245
LLK-1180-000 LLK-1180-001 (receiver)	2/201	LTK-1040-303	2/182	LXW-4050-000	2/246
LLK-1180-003 (receiver)	2/201	LTK-1040-303-505	2/181	LXW-4050-002	2/246
LLK-1181L-000	2/204	LTK-1040-303-506	2/182	LXW-5050-000	2/246
LLK-1181L-001 (receiver)	2/204	LTK-1050-301	2/185	LXW-C23-PA-000	2/242
LLK-1181L-003 (receiver) LLR-C12-PA-NMK-300	2/204 2/210	LTK-1050-301-505 LTK-1050-301-506	2/183 2/184	LXW-C23-PA-001 LXW-C23-PA-002	2/242 2/242
LLR-C12-PA-NMK-302	2/210	LTK-1050-301-300	2/185	LXW-C23-PA-003	2/243
LLR-C12-PA-NMK-304	2/210	LTK-1050-303-505	2/183	LXW-C23-PB-000	2/243
LLR-C23PA-NMS-10B	2/219	LTK-1050-303-506	2/184	LXW-C23-PB-001	2/243
LLR-C23PA-NMS-60D	2/219	LTK-1120-301	2/191 2/191	LXW-C23-PB-002 LXW-C23-PB-003	2/244 2/244
LLR-C23PA-NMS-101 LLR-C23PA-NMS-302	2/219 2/219	LTK-1120-303 LTK-1180-101	2/191	LXW-C23-PB-003	2/244 2/244
LLR-C23PA-NMS-400 (emitter		LTK-1180-103	2/198	LXW-C55-PA-000	2/245
LLR-C23PA-NMS-404	2/219	LTK-1180-303	2/198		
LLR-C23PA-NMS-603	2/219	LTK-3030-101	2/226		
LLS-1050-200 (emitter) LLS-1050-204 (receiver)	2/186 2/186	LTK-3030-103 LTK-3031-301	2/226 2/225		
LLS-1120-200 (emitter)	2/100	LTK-3031-301 LTK-3031-303	2/225		
LLS-1120-204 (receiver)	2/192	LTR-C23PA-NMS-403	2/218		
LLS-1121L-200 (emitter)	2/193	LTR-C23PA-PMS-60C	2/218		
LLS-1121L-204 (receiver)	2/193	LTR-C23PA-PMS-101	2/218		
LLS-1180-000 LLS-1180-001 (receiver)	2/202 2/202	LTR-C23PA-PMS-104 LTR-C23PA-PMS-301	2/218 2/218		
LLS-1180-003 (receiver)	2/202	LTR-C23PA-PMS-403	2/218		

Inductive	
Photoelectric	
Ultrasonic	
Capa	

Part reference	Chapter/page	Part reference	Chapter/page
LFG-1005-###	2/277	LFS-3060-103	2/261
LFG-1010-###	2/277	LFS-3065-103	2/260
LFG-1015-###	2/277	LFS-3066-103	2/260
LFG-1020-###	2/277	LFS-3066-403	2/261
LFG-1020-### LFG-1022-050	2/282	LFS-3360-103	2/259
LFG-1022-050 LFG-1030-###	2/277	LFS-4040-103	2/263
LFG-2010-###	2/278	LXF-0000-000	2/275
LFG-2020-###	2/278	LXG-0000-060	2/283
LFG-2030-###	2/278	LXG-0000-000 LXG-0000-080	2/283
LFG-3005-###	2/279	LXW-3030-000	2/275
LFG-3010-###	2/279	LXW-3060-000	2/275
LFG-3015-###	2/279	LXW-4040-000	2/275
LFG-3020-###	2/280	LXVV-4040-000	2/2/3
LFG-3022-050	2/282		
LFG-3030-###	2/280		
LFG-4010-###	2/281		
LFG-4020-###	2/281		
LFG-4030-###	2/281		
LFK-3030-103	2/256		
LFK-3031-301	2/255		
LFK-3031-303	2/255		
LFK-3031-304	2/255		
LFK-3060-103	2/261		
LFK-3065-103	2/259		
LFP-0001-000	2/275		
LFP-0002-000	2/275		
LFP-0003-000	2/275		
LFP-0004-100	2/268		
LFP-0005-100	2/265		
LFP-1001-020	2/265		
LFP-1002-020-002	2/274		
LFP-1002-020	2/266		
LFP-1003-020	2/266		
LFP-1004-020	2/265		
LFP-1005-020	2/267		
LFP-1006-020	2/271		
LFP-1007-020	2/271		
LFP-1010-020	2/273		
LFP-1011-020	2/273		
LFP-1012-020	2/265		
LFP-1013-020	2/267		
LFP-1102-020	2/266		
LFP-1105-020	2/267		
LFP-1108-020	2/272		
LFP-1109-020	2/272		
LFP-1202-020	2/266		
LFP-2001-020	2/268		
LFP-2002-020-002	2/274		
LFP-2002-020	2/269		
LFP-2003-020	2/268		
LFP-2004-020	2/269		
LFP-2005-020	2/270		
LFP-2006-020	2/268		
LFP-2102-020	2/269		
LFP-2104-020	2/270		
LFP-2202-020 LFS-3030-103	2/269		
LFS-3030-103 LFS-3031-301	2/256 2/255		
LFS-3031-301 LFS-3031-303	2/255 2/255		
LFS-3031-304	2/255 2/255		
LI U-0001-00 1	2/200		

ALL OVER THE WORLD

EUROPE Austria Belgium* Croatia

Czech Republic

Denmark Estonia Finland France* Germany* Great Britain*

Greece Hungary Ireland Italy* Luxembourg Netherlands Norway Poland

Portugal* Romania

Russian Federation

Slovakia Slovenia Spain Sweden Switzerland* Turkey Ukraine

AFRICA Morocco South Africa

Argentina Brazil* Canada Chile Mexico* Peru **United States***

Venezuela

China* India*

Indonesia Japan* Korea Malaysia Pakistan Philippines Singapore* Taiwan Thailand Vietnam

Australia New Zealand

Israel

United Arab Emirates

* Contrinex subsidiary

Terms of delivery and right to change design reserved.

HEADQUARTERS

CONTRINEX AG Industrial Electronics route André Piller 50 - PO Box - CH 1762 Givisiez - Switzerland Tel: +41 26 460 46 46 - Fax: +41 26 460 46 40 Internet: www.contrinex.com - E-mail: info@contrinex.com

www.contrinex.com

